

ABS A shift B A NOT N shift O N

AND A shift N A ON

ASC A shift S A OPEN O shift P O

ATN A shift T A OR

CHR$ C shift H C PEEK P shift E P

CLOSE CL shift O CL POKE P shift O P

CLR C shift L C POS

CMD C shift M C PRINT shift / ?

CONT C shift O C PRINT# P shift R P

COS READ R shift E R

DATA D shift A D REM

DEF D shift E D RESTORE RE shift S RE

DIM D shift I D RETURN RE shift T RE

END E shift N E RIGHT$ R shift I R

EXP E shift X E RND R shift N R

FN RUN R shift U R

FOR F shift O F SAVE S shift A S

FRE F shift R F SGN S shift G S

GET G shift E G SIN S shift I S

GET# SPC(S shift P S

GOSUB GO shift S GO SQR S shift Q S

GO STATUS ST ST

GOTO G shift O G STEP ST shift E ST

IF STOP S shift T S

INPUT STR$ ST shift R ST

INPUT# I shift N I SYS S shift Y S

INT TAB T shift A T

LEFT$ LE shift F LE TAN

LEN THEN T shift H T

LET L shift E L TIME TI TI

LIST L shift I L TIME$ TI shift 4 TI$

LOAD L shift O L TO

LOG USR U shift S U

MID$ M shift I M VAL V shift A V

NEW VERIFY V shift E V

NEXT N shift E N WAIT W shift A W

ABS ABS(<number>)

Type Short Appears Location Token HEX Token DEC

NUMERIC A shift B A DC58 B6 182

ABS returns the absolute value of a number, which is its value without a

negative sign. For example, ABS(7) and ABS(-7) both return a 7.

Example:

 FOR T = 0 TO 8: PRINT ABS(4-T): NEXT

This is a technique I use to create symmetrical patterns where the value

decreases to zero and then increases again. This can be applied to visual

effects, measuring deviations, and sorting. I find it helpful in games for

distance measurement without consideration to direction.

AND <expression> AND <expression>

Type Short Appears Location Token HEX Token DEC

OPERATOR A shift N A CFE9 AF 175

AND is used in Boolean operations to test bits and evaluate logical

conditions. It returns 1 only if both operands are 1. If either or both

operands are 0, the result is 0. This is useful in logical comparisons:

 1 AND 1 = 1 0 AND 1 = 0

 1 AND 0 = 0 0 AND 0 = 0

Example:

 37 AND 23 = 5 0 0 1 0 0 1 0 1 (37)

 0 0 0 1 0 1 1 1 (23)
 0 0 0 0 0 1 0 1 (5)

 IF A=1 AND B=2 THEN PRINT "BOTH ARE TRUE"

This line checks for multiple conditions in combination.

ASC ASC(<string>)

Type Short Appears Location Token HEX Token DEC

NUMERIC A shift S A D78B C6 198

ASC returns a number from 0 to 255, the PETSCII value of the first

character in the string. An empty string will produce an ?ILLEGAL

QUANTITY error. See the PETSCII code chart.

Example:

 1 PRINT ASC("A") output is 65 for A

 2 PRINT ASC("APPLE") output is 65 for A

3 A$="TEST"

4 PRINT ASC(A$) output is 84 for T

ATN ATN(<number>)

Type Short Appears Location Token HEX Token DEC

NUMERIC A shift N A E308 C1 193

ATN returns the arctangent (inverse tangent) of a number. This means

that it takes a ratio (a number) and tells you the angle whose tangent is

that ratio. The tangent of an angle in a right triangle is the ratio of the

opposite side to the adjacent side (opposite/adjacent). ATN reverses

this: It takes the ratio and gives you the angle (in radians).

ATN(1) = 0.785398163

ATN(1)*4 = 3.14159266

Example:

 1 INPUT "OPPOSITE SIDE"; O
 2 INPUT "ADJACENT SIDE"; A

 3 PRINT "ANGLE IS" ATN(O/A)*180/π

This program finds one angle of a right triangle by inputting the lengths
of two sides. ATN helps find angles in trigonometry when you only
know side lengths. It is useful in rotation and direction calculations.

CHR$ CHR$(<number 0-255>)

Type Short Appears Location Token HEX Token DEC

STRING C shift H C D6E6 C7 199

CHR$ returns a PETSCII character (of string type). The number is

automatically treated as an integer. CHR$ is the inverse function of ASC.

 1 PRINT CHR$(65) output is A

2 PRINT CHR$(147) clears the screen

3 PRINT CHR$(28) change text color to RED

4 PRINT CHR$(14) change to lowercase

Example:

 1 PRINT CHR$(147)

 2 FOR I= 65 TO 90

 3 PRINT CHR$(I) SPC(4)

 4 NEXT

This program clears the screen then PRINTs the alphabet. CHR$ is useful

for special commands such as PRINTing quotation marks without

confusing the BASIC interpreter.

CLOSE CLOSE(<file number 0-255>)

Type Short Appears Location Token HEX Token DEC

COMMAND CL shift O CL FFC3 A0 160

CLOSE is used to close currently open files or devices.

Example:

 1 OPEN 1,4

2 PRINT#1, "TEST"

3 CLOSE 1

CLR CLR

Type Short Appears Location Token HEX Token DEC

COMMAND C shift L C C65E 9C 156

CLR clears all variables and resets the stack and data pointer. It does not

erase the program in memory but removes all stored values, making it

useful for restarting calculations or freeing up memory.

Example:

 1 A=3.14

2 A$= "TEST"

3 PRINT A output is 3.14
4 PRINT A$ output is TEST
5 CLR clears all variables

6 PRINT A output is 0

7 PRINT A$ output is an empty string

CMD CMD<file number>[,<string>]

Type Short Appears Location Token HEX Token DEC

I/O C shift M C CA86 9D 157

CMD redirects output to a device, such as a printer or disk file, instead

of the default screen device. The file number must be specified in a

prior OPEN statement. Once CMD is used, all subsequent PRINT

statements will send their output to the specified device.

Example:

 1 OPEN 1,4

 2 CMD 1

 3 PRINT "TEST"

 4 PRINT #1

 5 CLOSE 1

CONT CONT

Type Short Appears Location Token HEX Token DEC

COMMAND C shift O C C857 9A 154

CONT resumes the execution of a BASIC program from the exact point

where it was stopped (by the RUN/STOP key, STOP command, or. While

the program is stopped, you can inspect or modify variables before

resuming. CONT does not work if the program was edited, if an error

caused the stop, or if an error occurred before attempting to continue.

Example:

 1 A=3: PRINT A: STOP: PRINT A

 RUN the program displays 3 and breaks

 A=5 now, change the value of A

 CONT the program continues with the new value

This program sets a variable and stops the program. You can modify the

variable and resume the program with CONT.

COS COS(<number>)

Type Short Appears Location Token HEX Token DEC

NUMERIC --- E261 BE 190

COS returns the cosine of a given angle (in radians, not degrees). Used

in trigonometry for calculating angles and side lengths. This is useful in

graphics (circular motions) and sound (waveform calculations).

COS(0) = 1 cosine of 0 radians

COS(π/2) = 0 cosine 90 degrees (π/2 radians)

COS(π) = -1 cosine 180 degrees (π radians)

Example:

 1 INPUT "DISTANCE TRAVELED"; D
 2 INPUT "ANGLE IN RADIANS"; A

 3 PRINT "HORIZONTAL DISTANCE" D * COS(A)

DATA DATA<value>[,<value> . . .]

Type Short Appears Location Token HEX Token DEC

COMMAND D shift A D C858 83 131

DATA stores a list of values that can be read later by the program as a
continuous list using the READ statement. Any type of information can
be stored here, separated by commas. If you want to include special
characters such as a comma, space, or colon as data, they must be
enclosed in quotation marks. The DATA statement doesn't need to be
executed during the running of the program, so it may be anywhere.

Example:

 1 READ A, B%, C$

 2 PRINT A, B%, C$

 3 END

 4 DATA 20, 50, "TEST"

DEF DEFFN<name>(<variable>)=<expression>

Type Short Appears Location Token HEX Token DEC

STATEMENT D shift E D D3B3 96 150

DEF defines a custom function that can be used later in a program. The
function name is the letters FN followed by any variable name (for
example, FNA). The function can take one numeric variable as input and
call be called multiple times throughout the program.

The DEF command is typically used to simplify calculations or create
reusable formulas. The FN keyword is required to reference the
function when it's called in expressions. See FN.

Example:

 1 DEF FN A(X) = X * X

 2 PRINT FN A(5) output is 25

 3 PRINT FN A(7) output is 49

DIM DIM<variable>(<d1>[,d2…])[,<var>(<d1>[d2…])]

Type Short Appears Location Token HEX Token DEC

STATEMENT D shift A D D081 86 134

DIM is used to declare arrays in BASIC. It reserves space for a list of
values stored under a single variable name (numeric, string, or integer),
indexed by a number. Arrays can be one-dimensional or multi-
dimensional. The highest index is the number specified in the DIM
statement, but since BASIC arrays start at index 0, an array declared as
DIM A(5) will have six elements: A(0) through A(5).

Arrays must be declared with DIM before being used. If an array is used
without a DIM statement, BASIC assumes a default size of 10.

Example:

DIM A(65) 1 dimensional numeric array

DIM B(7), B$(11) two 1 dimensional arrays

DIM C%(5,3) 2 dimensional integer array

DIM D(5,3,20) 3 dimensional numeric array

END END

Type Short Appears Location Token HEX Token DEC

STATEMENT E shift N E C831 80 128

END marks the termination of a BASIC program. When encountered, it
stops execution immediately, even if there are more lines of code after
it. It does not clear variables, so they remain available after execution.
END is not required, as execution will stop automatically when the last
line runs.

Example:

 1 PRINT "THIS IS LINE 1"

2 END

3 PRINT "THIS LINE WILL NEVER EXECUTE"

EXP EXP(<number>)

Type Short Appears Location Token HEX Token DEC

NUMERIC E shift X E DFED BD 189

EXP returns the mathematical constant e (approximately 2.71828183)
raised to the power of a given number (X). A value of X greater than
88.0296919 will cause an ?OVERFLOW ERROR. EXP is useful in scientific
calculations, growth models, and logarithmic functions.

EXP(X) = eX

Example:

 1 PRINT EXP(0) output is 1
 2 PRINT EXP(1) output is 2.718
 3 PRINT EXP(2) output is 7.389

FN FN<name>(<expression>)

Type Short Appears Location Token HEX Token DEC

NUMERIC --- D3F4 A5 165

FN is used to call a user-defined function that was previously defined
using DEF. The function name consists of FN followed by a letter and
optionally one more letter or digit. When calling the function, the
argument is placed in parentheses after the function name. See DEF.

Example:

 1 REM RANDOM NUMBER

2 DEF FND(X) = INT(RND(1) * X) + 1

 3 PRINT "6 SIDED DICE ROLL:" FN D(6)

 4 PRINT "20 SIDED DICE ROLL:" FN D(20)

 5 REM CELCIUS TO FAHRENHEIT

 6 DEF FNT(C) = C * 9 / 5 + 32

7 PRINT FNT(0) output is 32

8 PRINT FNT(100) output is 212

FOR FOR<variable>=<start>TO<end>[STEP<number>]

Type Short Appears Location Token HEX Token DEC

STATEMENT F shift O F C742 B1 129

FOR is used to create loops that repeat a block of code a specific
number of times. It works with a counter variable that starts at a given
value and increases (or decreases) by a set step each time NEXT is
encountered, until it reaches a limit. If STEP is not specified, the loop
increases by 1 each time.

Example:

 1 FOR I = 1 TO 10: PRINT I: NEXT

FOR loops can be "nested" inside one another, which means you can
have a FOR loop inside another FOR loop. This allows you to create
more complex iterations over multiple dimensions or ranges. Each
nested loop controls its own counter variable and has its own set of
start, stop, and step values. The inner loop will complete its entire cycle
before the outer loop moves to the next iteration. The VIC allows up to
10 nested loops.

Example:

 1 FOR A = 1 TO 3

2 FOR B = 1 TO 5

3 PRINT "A="; I, "B="; T

4 NEXT: NEXT

FRE FRE(<dummy number/string>)

Type Short Appears Location Token HEX Token DEC

NUMERIC F shift R F D37D B8 184

FRE returns the amount of free memory (RAM) available for a program

and variables.

Example:

 PRINT FRE (0) output is number of unused bytes

GET GET<variable>

Type Short Appears Location Token HEX Token DEC

STATEMENT G shift E G FFE4 A1 161

GET retrieves the next character typed and stores it in a variable
(numeric, integer, or string). It allows a program to capture a single
character from the keyboard (or keyboard buffer) without waiting for
the user to press the Return key.

GET uses real-time key detection; it does not pause for input. If no key
is pressed when the statement executes, the variable remains its default
(0 for numeric variables and an empty string for string variables. If the
input is incompatible with the expected variable type—for example, if a
letter is pressed when a numeric variable is used—an error will occur.

Example:

 1 GET A$

 2 IF A$= "" THEN PRINT "NO KEY PRESSED"

 3 IF A$<> "" THEN PRINT "YOU PRESSED:"; A$

 4 GOTO 1

GET# GET<file number>,<variable>[,<variable>…]

Type Short Appears Location Token HEX Token DEC

I/O --- --- --- ---

GET retrieves a single character from a device, such as a file or a
communication channel, without waiting for a full line of input. It is
similar to GET, but it works with files and other input sources instead of
the keyboard. The device number is assigned when the file was opened
with OPEN. The read character will be stored as a variable.

Example:

 1 OPEN 1,8,2,"TESTFILE,S,R"

 2 GET#1, A$, B

 3 IF A$<>"" THEN PRINT A$; : GOTO 2

 4 CLOSE 1

GO GO TO<line number>

Type Short Appears Location Token HEX Token DEC

STATEMENT --- C8A0 B6 203

GO itself does not perform any action. When used with TO, it functions
as the equivalent of GOTO. GO alone results in a syntax error. GO TO
uses two tokens instead of one, taking up more memory and processing
slightly slower. See GOTO.

Example:

 1 PRINT "TEST": GO TO 1

GOSUB GOSUB<line number>

Type Short Appears Location Token HEX Token DEC

STATEMENT GO shift S GO C883 8D 141

GOSUB goes to a subroutine in a BASIC program. When GOSUB is
executed, the program jumps to the specified line number and
continues running from there. When a RETURN statement is
encountered, the program jumps back to the line immediately after the
GOSUB command and continues execution from that point.

This allows code to be reused without duplication. Multiple subroutines
can be called consecutively, but they follow a “Last In, First Out” (LIFO)
order—meaning the last subroutine called will be the first to return. If
too many subroutines are nested at once, the system runs out of
memory.

Example:

 1 PRINT "START OF PROGRAM"

 2 GOSUB 10

 3 PRINT "CONTINUE PROGRAM"

 4 GOSUB 10

5 PRINT "END OF PROGRAM"

6 END

 10 PRINT "SUBROUTINE"

 11 RETURN

GOTO GOTO<line number>

Type Short Appears Location Token HEX Token DEC

STATEMENT G shift O G C8A0 89 137

GOTO causes the program to jump directly to a line in the program,
skipping any lines in between. This is useful for controlling the flow of
execution, such as jumping to a different part of the program or looping
back to a previous section. It's possible to create loops with GOTO that
never end, requiring the user to interrupt it with the RUN STOP key.

Example:

 1 PRINT "HELLO WORLD"

 2 GOTO 1

IF IF<expression>THEN<line number or statement>

Type Short Appears Location Token HEX Token DEC

STATEMENT --- C928 8B 139

IF is used for conditional branching in a program. It evaluates an
expression, and if the expression is true, the following statement is
executed. This can be a command, an expression, or a line redirection.
If false, everything else on that line is skipped (not executed), and the
program jumps directly to the next program line.

IF can be paired with GOTO instead of THEN. If THEN is immediately
followed by a number, BASIC interprets it as GOTO that line number. IF
statements support comparisons like <, >, =, <=, >=, <> and logical
operators like AND, OR, and NOT for more complex conditions.

Example:

 1 INPUT "ENTER A NUMBER"; N

 2 IF N=0 OR N>10 THEN 1

3 IF N=5 THEN PRINT "FIVE": END

 4 IF N=6 OR N=7 THEN PRINT "SIX OR 7": GOTO 1

 5 IF N=>8 THEN PRINT "EIGHT OR MORE"

 6 IF N<4 THEN PRINT "LESS THAN FOUR"

INPUT INPUT[“<prompt>”;]<variable>[,<variable>…]

Type Short Appears Location Token HEX Token DEC

STATEMENT --- FFCF 85 133

INPUT defines a variable from user input. It displays a question mark
then pauses execution and waits for the user to type a response, which
is then stored in a specified variable. If multiple variables are listed, the
user must enter values separated by commas. A prompt can be
displayed by including a string followed by a semicolon or a comma
before the variable name. User input must end with pressing the Return
key. If no input is received, the contents of the variables remain
unchanged. The only way to end a program during an INPUT statement
is to hold down the RUN/STOP key and hit RESTORE.

Example:

 1 INPUT A

 2 INPUT B, C, D

3 INPUT "ENTER A NUMBER"; E

 4 PRINT A, B, C, D, E

INPUT# INPUT#<file number>,<variable>[,<variable>…]

Type Short Appears Location Token HEX Token DEC

I/O I shift N I CBA5 84 132

INPUT# defines a variable from the next piece of data from a previously
opened file stored on peripheral device media such as disk or tape. It
reads complete data consisting of maximum 80 characters into variables
and not only single characters as the GET# command. If the file has no
more data, the program will automatically continue to the next line of
code.

Example:

 1 OPEN 1,8,2,"TESTFILE"

 2 INPUT#1, A$

 3 PRINT A$;

4 CLOSE 1

INT INT(<number>)

Type Short Appears Location Token HEX Token DEC

NUMERIC --- DCCC B5 181

INT returns the integer part of a given number. It essentially removes

any digits after the decimal point of a positive number. If the number is

negative, INT rounds it down to the next lower integer (more negative).

Example:

 1 PRINT INT(3.14) output is 3
 2 PRINT INT(-3.14) output is negative 4

 3 PRINT INT(3.14 + 0.5) output is 4

INT always round downward. Line 3 demonstrates a technique for

rounding a number up or down by adding 0.5.

LEFT$ LEFT$(<string>,<integer number 0-255>)

Type Short Appears Location Token HEX Token DEC

STRING LE shift F LE D700 C8 200

LEFT$ returns a specified number (from 0 to 255) of characters from the

left (beginning) of a string. If the specified length is 0, an empty string

("") is returned.

If the specified length is greater than the string length, the entire string

is returned. If length is negative or greater than 255, an error occurs.

Example:

 1 A$="TEST"

2 PRINT LEFT$(A$, 1) output is T

3 PRINT LEFT$(A$, 3) output is TES

4 PRINT LEFT$("ABC", 2) output is AB

5 PRINT LEFT$("ABC", 5) output is ABC

LEN LEN(<string>)

Type Short Appears Location Token HEX Token DEC

NUMERIC --- D77C C3 195

LEN returns the number of characters in a string, including spaces and

non-printing characters. The result is an integer representing the length

of the string. An empty string returns zero.

Example:

 1 A$="TEST"

2 PRINT LEN(A$) output is 4

3 PRINT LEN("A B C") output is 5

4 PRINT LEN("") output is 0

5 PRINT SPC(11-LEN(A$)/2) centers a string on screen

Line 5 demonstrates a technique for centering text on screen. The

center of a 22 column screen is 11. By subtracting half the length of a

string from 11, one can determine the number of spaces to roughly

center different length strings on a line.

LET [LET]=<expression>

Type Short Appears Location Token HEX Token DEC

STATEMENT L shift E L C9A5 88 136

LET assigns a value to a variable. It is optional, meaning you can write

assignments with or without it. Since LET is not required, most

programmers omit it. Remember, variables are shortened to two

characters. So, SCORE would automatically be the same as SC.

Example:

 1 LET A = 17.6

2 LET A$ = "TEST"

3 LET B% = A + 15

4 LET SCORE = 10 : REM SC = 10

LIST LIST[[line number]-[line number]]>

Type Short Appears Location Token HEX Token DEC

COMMAND L shift I L C69C 9B 155

LIST displays the BASIC program currently in memory. By default, this

listing is shown on the screen. However, it can also be redirected to

other output devices, such as a printer, by using specific commands or

redirection settings. LIST is also used to display disk directories. During

the listing of a long program, the user can cancel the listing immediately

by pressing <RUN/STOP>. To slow down the scrolling speed, the user

can hold down the <CTRL> key.

Example:

LIST displays the entire program

LIST 10 displays line 10 only

LIST 10- displays from line 10 on

LIST -10 displays from start to line 10

LIST 10-20 displays line 10 through line 20

LIST 0 displays the entire program

LOAD LOAD[“<file name>”[,<device>[,<number>…]]]

Type Short Appears Location Token HEX Token DEC

COMMAND L shift O L FFD5 93 147

LOAD transfers a previously SAVED program, file, or data from an
external device (such as a disk or tape) into the computer’s memory.
LOAD works with file-name pattern matching and special characters
explained in the device section on page XXX.

Example:

 LOAD next program on tape

 LOAD "TEST" tape program by file name

 LOAD A$ tape program by string

 LOAD "TEST" ,8 disk program

LOAD "TEST" ,8 ,1 disk in same saved memory

LOG LOG(<number>)

Type Short Appears Location Token HEX Token DEC

NUMERIC --- D9EA BC 188

LOG returns the natural logarithm of a positive number greater than

zero. The result of LOG(x) is the power to which e must be raised to get

the value x.

e is approximately equal to 2.71828. The natural logarithm is commonly

used in mathematics, physics, and engineering for dealing with

exponential growth or decay.

1 PRINT LOG(1) output is 0

2 PRINT LOG(2.71828184) = 1

3 PRINT LOG(100)/LOG(10) = 2

MID$ MID$(<string>,<start>[,<length>])

Type Short Appears Location Token HEX Token DEC

STRING M shift I M D737 CA 202

MID$ returns a substring from a string, starting at a given position and

(optionally) with a specific length. Both the start position and length

must be between 1 and 255, and they are interpreted as integer values.

If the start position exceeds the length of the string, or if the specified

length is negative, the result will be an empty string.

Example:

 1 A$="ABCDEFGHIJ"

2 PRINT MID$(A$, 2, 2) output is BC

3 PRINT MID$(A$, 3, 5) output is CDEFG

4 PRINT MID$(A$, 5, 12) output is EFGHIJ (end)

NEW NEW

Type Short Appears Location Token HEX Token DEC

COMMAND --- C642 A2 162

NEW clears the current program from memory. It removes all program

lines and resets any variables or data stored during the program's

execution without confirmation. However, it does not reset or affect

system settings. There is no undo function for NEW in BASIC.

Example:

 1 PRINT "TEST"

 NEW can be used in direct mode or in program

 LIST there is no longer a program in memory

NEXT NEXT[<counter variable>][,<variable>]. . .

Type Short Appears Location Token HEX Token DEC

STATEMENT N shift E N CD1E 82 130

NEXT advances the counter variable in a FOR...NEXT loop. The counter
variable is incremented (or decremented) by the specified STEP value.

NEXT is used with the FOR statement to mark the end of the loop’s code
block and returns to the corresponding FOR statement (If a variable is
not included, this is the most recent active loop's counter). If the
counter limit is reached, the loop ends, and the program continues with
the next statement or line. Multiple loop counters can be terminated by
a single NEXT statement if the variable names are listed in order,
separated by commas, from the innermost loop to the outermost loop.
The VIC allows up to 10 nested loops.

Example:

 1 FOR A = 1 TO 10

2 PRINT A: NEXT

 3 FOR B = 1 TO 3: FOR C = 1 TO 5

4 PRINT B, C: NEXT C, B

NOT <expression> NOT <expression>

Type Short Appears Location Token HEX Token DEC

OPERATOR N shift O N CED4 A8 168

NOT performs a bitwise complement on integer numbers, flipping every

bit and interpreting the result as a signed integer. For example, the

number 5 in binary (16-bit signed integer format) returns negative 6:

0000 0000 0000 0101 5 in binary, 16-bit signed integer

1111 1111 1111 1010 NOT 5 in binary, negative 6

When NOT is applied to a boolean expression (like a comparison), it

treats 0 as false (0) and any non-zero value as true (-1)

Example:

 1 PRINT NOT 0 output is -1

 2 PRINT NOT 5 output is -6

 3 PRINT NOT -1 output is 0

 4 PRINT NOT (5=5) output is 0 (false)

ON ON<expression>GOSUB/GOTO<line>[,<line>]. . .

Type Short Appears Location Token HEX Token DEC

STATEMENT --- C94B 91 145

ON is used for conditional branching based on a numeric expression
(evaluated as an integer). It selects one of several possible GOTO or
GOSUB destinations. If the result is less than 1 or greater than the
number of line numbers listed, the program continues without jumping.

Example:

 1 INPUT A

 2 ON A GOTO 3, 4, 5: END

 3 PRINT "ONE": END

 4 PRINT "TWO": END

 5 PRINT "THREE": END

OPEN OPEN<file no.>[,<device>[,<channel>[,<name>]]

Type Short Appears Location Token HEX Token DEC

I/O O shift P O FFC0 9F 159

OPEN establishes a communication channel between the computer and
an external device, such as a disk drive, printer, or user port. This
channel allows data to be transferred between the program and the
device. See I/O section for device numbers and more information.

Example:

 OPEN 1,8,15,"<command>"

Opens channel 1 to device 8 (disk drive), with 15 as the command

channel to send the specified disk command.

OR <expression> OR <expression>

Type Short Appears Location Token HEX Token DEC

OPERATOR --- CFE6 B0 176

OR is used in Boolean operations to test bits and evaluate logical

conditions. It returns 1 if either or both operands are 1. If returns 0

only if both operands are 0. This is useful in logical comparisons:

 1 OR 1 = 1 0 OR 1 = 1

 1 OR 0 = 1 0 OR 0 = 0

Example:

 5 AND 3 = 7 0 0 0 0 0 1 0 1 (5)

 0 0 0 0 0 0 1 1 (3)
 0 0 0 0 0 1 1 1 (7)

 IF A=1 OR B=2 THEN PRINT "BOTH ARE TRUE"

Checks for multiple conditions, returning true if at least one condition is

met.

PEEK PEEK(<memory address>)

Type Short Appears Location Token HEX Token DEC

STATEMENT P shift E P D80D C2 194

PEEK returns the byte value stored at the specified memory address.

The address must be a number between 0 and 65535. The result is an

integer between 0 and 255, representing the data at that location. This

function is often used to read system settings, hardware registers, or

memory-mapped data.

Example:

 1 PRINT PEEK(7680) output is the value in memory

π π

Type Short Appears Location Token HEX Token DEC

CONSTANT --- CEA8 FF 255

π is a built-in constant representing an approximation of pi.

Example:

 1 PRINT π output is 3.14159265

POKE POKE<memory address>,<value>

Type Short Appears Location Token HEX Token DEC

STATEMENT P shift O P D824 97 151

POKE stores a byte value at a specified memory address. The address

must be a number between 0 and 65535, representing the memory

location. The value must be between 0 and 255.

Example:

 1 POKE 7680, 42 puts the value in memory

POS POS(<dummy number>)

Type Short Appears Location Token HEX Token DEC

NUMERIC --- D39E B9 185

POS returns the current position of the output cursor in the current text

window (or device). Specifically, it tells you the column number of the

cursor on the current line of output. The position is returned as an

integer, which corresponds to the column where the next output would

appear.

Example:

 1 PRINT "TEST";
 2 PRINT POS(X) output is TEST 4

PRINT PRINT[<expression>] [[;|,]<expression>...]

Type Short Appears Location Token HEX Token DEC

STATEMENT shift / ? FFD2 99 153

PRINT displays text, numbers, or expressions on the screen. It is used to

output information during program execution. The content can be

separated by commas or semicolons to control formatting. This means

the cursor automatically moves to the next line after the output.

Expressions can be text strings, numbers, variables, or special characters

(like cursor controls). Semicolon (;) prints the next item immediately

after the previous one without space. Comma (,) aligns the next item at

the next tab stop (usually every 10 characters on the VIC-20). If no

separator follows the expression, the cursor moves to the next line.

Example:

 1 PRINT "TEST" outputs TEST and moves to next line

 2 PRINT "A";"B" outputs AB

 3 PRINT A outputs 0, the value of A
 4 PRINT A,B outputs 0 0 with tab spacing

PRINT# PRINT#<file number>,<variable>[,<variable>…]

Type Short Appears Location Token HEX Token DEC

I/O P shift R P CA80 98 152

PRINT# sends output to an open communication channel, such as a disk
drive, printer, or other external device, instead of the screen. The
channel must have been previously opened by the OPEN command.
Expressions can include text, numbers, or variables.

Example:

 1 OPEN 1,8,2,"TESTFILE"

 2 PRINT#1, A$

 3 CLOSE 1

READ READ<variable> [,<variable>]...

Type Short Appears Location Token HEX Token DEC

STATEMENT R shift E R CC06 87 135

READ retrieves values from a list of data items provided by DATA

statements in the program. READ assigns the next value from the DATA

list to one or more variables, moving sequentially through the list each

time it is called. The location of the DATA statement in the program is

irrelevant, as it does not affect the program's flow.

Each variable receives one item from the DATA list in the order they

appear. The DATA statement holds literal values separated by commas.

The program must include enough DATA items for all READ statements,

or an OUT OF DATA error will occur. RESTORE can reset the data

pointer, allowing the same DATA items to be read again.

Example:

 1 READ A, B$

 2 PRINT A, B$ outputs 17 TEST

 3 END
 4 DATA 17, "TEST"

REM REM[<any text>]

Type Short Appears Location Token HEX Token DEC

STATEMENT --- C93B 8F 143

REM insert comments in a BASIC program. Anything following REM on

the same line is ignored during execution, serving only as a note for the

programmer. Though primarily for comments, some programmers use

REM to create placeholders or visual markers in the code for easier

navigation with LIST.

When using LIST, graphic characters that are not enclosed in quotation

marks might be interpreted as tokens. This can potentially change the

computer's behavior during LIST.

Example:

 1 REM THIS IS AN EXAMPLE PROGRAM

 2 PRINT SC : REM SC IS A VARIABLE FOR SCORE

RESTORE RESTORE

Type Short Appears Location Token HEX Token DEC

STATEMENT RE shift S RE C81D 8C 140

RESTORE resets the position of the DATA pointer. Once RESTORE is

called, the next READ command will retrieve data from the reset

position. It can be used multiple times within the program to revisit

DATA values, making it useful in loops or conditional structures.

Example:

 1 READ A, B$

 2 PRINT A, B$ outputs 17 TEST

 3 RESTORE

 4 GOTO 1

 5 DATA 17, "TEST"

RETURN RETURN

Type Short Appears Location Token HEX Token DEC

STATEMENT RE shift T RE C8D2 8E 142

RETURN transfers control back to the statement immediately following

the GOSUB that called the subroutine. It marks the end of a subroutine,

allowing the program to resume execution at the point where the

subroutine was invoked.

Example:

 1 PRINT "START OF PROGRAM"

 2 GOSUB 10: PRINT "CONTINUE PROGRAM"

 3 GOSUB 10: PRINT "END OF PROGRAM"

4 END

 10 PRINT "SUBROUTINE"

 11 RETURN

RIGHT$ RIGHT$(<string>,<integer number 0-255>)

Type Short Appears Location Token HEX Token DEC

STRING R shift I R D72C C9 201

RIGHT$ returns a specified number (from 0 to 255) of characters from

the rightmost portion of a string, extracting a specified number of

characters from the end of the string. If the specified length is 0, an

empty string ("") is returned.

If the specified length is greater than the string length, the entire string

is returned. If length is negative or greater than 255, an error occurs.

Example:

 1 A$="TEST"

2 PRINT RIGHT$(A$, 1) output is T

3 PRINT RIGHT$(A$, 3) output is EST

4 PRINT RIGHT$("ABC", 2) output is BC

5 PRINT RIGHT$("ABC", 5) output is ABC

RND RND(<dummy number>)

Type Short Appears Location Token HEX Token DEC

NUMERIC R shift N R E094 BB 187

RND generates a pseudo-random number between 0 and 1 (exclusive)

using VIA 1 timer A and timer B. The result is always greater than or

equal to 0 and less than 1.

In RND(X), the X parameter can affect randomness in certain cases,

positive values essentially act the same, making X a dummy for those

inputs. 0 produced a less varied sequence of random numbers because

the result depends on the system timer, which may follow predictable

patterns. RND(π) has been suggested as an ideal value for achieving

both fast execution and an even distribution of random numbers.

Example:

 1 PRINT RND(1) output is between 0 and 1
 2 PRINT INT(RND(1)*7) output is integer 0 to 6

 3 PRINT INT(RND(1)*7)+1 output is integer 1 to 7

RUN RUN[<line number>]

Type Short Appears Location Token HEX Token DEC

COMMAND R shift U R C871 8A 138

RUN starts the execution of a BASIC program from the lowest-numbered

line in memory. It clears any previous variables and resets the DATA

pointer to the first DATA statement unless the program is started with

the optional line number after RUN format. Without a line number, RUN

begins execution from the first line.

Pressing RUN/STOP during execution halts the program.

Example:

RUN begins execution from the first line

RUN 10 begins execution from line 10

SAVE SAVE[“<file name>”[,<device>[,<number>…]]]

Type Short Appears Location Token HEX Token DEC

COMMAND S shift A S FFD8 94 148

SAVE is used to save a program or data to a storage device, such as a
cassette tape or disk. It allows users to preserve their work for future
use or transfer. The SAVE command specifies the device number, the file
name, and the type of data being saved (typically a program or data
file). The SAVE command is typically used to preserve programs or data
files for later loading with the LOAD command.

Example:

 SAVE saves to tape without name

 SAVE "TEST" save to tape with file name

 SAVE A$ tape program by string

 SAVE "TEST" ,8 disk program

SAVE "TEST" ,8 ,1 disk in same saved memory

SGN SGN(<number>)

Type Short Appears Location Token HEX Token DEC

NUMERIC S shift G S DC39 B4 180

SGN returns the sign of a numeric expression. It indicates whether the

number is positive, negative, or zero. The SGN function is useful for

testing the direction of numbers, especially in mathematical operations

or decision-making within a program.

Example:

 1 PRINT SGN(1) output is 1

2 PRINT SGN(36879) output is 1

3 PRINT SGN(0) output is 0

4 PRINT SGN(-7) output is -1

SIN SIN(<number>)

Type Short Appears Location Token HEX Token DEC

NUMERIC S shift I S E268 BF 191

SIN returns the trigonometric sine of a given angle in radians. The result

will always be between -1 and 1. To convert degrees to radians (since

SIN expects radians), multiply the angle by PI/180:

SIN(0) = 0 sine of 0 radians

SIN(π/2) = 1 sine 90 degrees (π/2 radians)

SIN(π) = 0 sine 180 degrees (π radians)

SIN(-π/2) = -1 sine -90 degrees (-π/2 radians)

Example:

 1 INPUT "DISTANCE TRAVELED"; D
 2 INPUT "ANGLE IN RADIANS"; A

 3 PRINT "VERTICAL DISTANCE" D * SIN(A)

SPC(SPC(<integer number 0-255>)

Type Short Appears Location Token HEX Token DEC

STRING S shift P S CAF8 A6 166

SPC(inserts a specified number of spaces (between 0 and 255) into

printed output. The function is used within PRINT statements to control

text formatting. A semicolon is not necessary before or after a SPC

statement. If the specified length is negative or greater than 255, an

error occurs. If SPC() is the last element in the line, the next PRINT

statement will resume printing immediately after the inserted spaces,

without moving to a new line.

Example:

 1 PRINT SPC(5) "A" output is A

2 PRINT "A" SPC(5) "B" output is A B

SQR SQR(<number>)

Type Short Appears Location Token HEX Token DEC

NUMERIC S shift Q S DF71 BA 186

SQR calculates the square root of a positive numeric expression. The

result is the non-negative number that, when multiplied by itself, equals

the input value. The function only works with non-negative numbers. It

will not handle imaginary numbers or negative square roots.

Example:

 1 PRINT SQR(25) output is 5

2 PRINT SQR(2) output is 1.41421356

3 PRINT SQR(0) output is 0

STATUS STATUS

Type Short Appears Location Token HEX Token DEC

NUMERIC S T ST C795 --- ---

STATUS returns a series of numbers that reflect the status of connected

I/O devices such as disk drives, printers, or other peripherals. When

used with a specific device number, it shows whether the device is

ready for use or if there's an error.

Example:

 1 PRINT STATUS

2 PRINT ST AND 64 displays a distinct bit

BIT VALUE TAPE SERIAL RS-232

0 0 OK OK OK

0 1 Write time out Parity error

1 2 Read time out Framing error

2 4 Data block too
short

 Rec buffer
overrun 3 8 Data block too

long

4 16 Verify read error CTS signal
missing 5 32 Checksum error

6 64 End of file (EOI) End of file (EOI) RTS signal
missing 7 128 Device not present Break detected

STEP . . .[STEP<number>]

Type Short Appears Location Token HEX Token DEC

STATEMENT ST shift E ST C82F A9 169

STEP is used in conjunction with the FOR loop in BASIC programming to
control the increment or decrement of the loop counter. By default, the
counter increases by 1 each time the loop runs, but STEP allows you to
change this value to any number.

Example:

 1 FOR I = 1 TO 10 STEP 2 increment by 2

2 PRINT I: NEXT

 3 FOR I = 1 TO 10 STEP .02 increment by 0.02

4 PRINT I: NEXT

5 FOR I = 10 TO 1 STEP -1 decrement by 1

5 PRINT I: NEXT

STOP STOP

Type Short Appears Location Token HEX Token DEC

STATEMENT S shift T S D465 90 144

STOP halts the execution of a program and triggers a "BREAK" message,
displaying the line number where the stop occurred. This is useful for
debugging.

Example:

 1 PRINT "START"

 2 STOP

 3 PRINT "END"

 RUN

 START

 BREAK IN 2

 READY.

STR$ STR$(<number>)

Type Short Appears Location Token HEX Token DEC

STRING ST shift R ST E127 C4 196

STR$ converts a numeric value into a string. The result is a string that

can be printed, concatenated, or manipulated just like any other string.

Example:

 1 X= 17

2 A$= STR$(X)

3 PRINT A$ output is 17

SYS SYS<memory address>

Type Short Appears Location Token HEX Token DEC

STATEMENT S shift Y S E127 9E 158

SYS calls a machine language routine by jumping directly to a specific
memory address. This allows BASIC programs to execute custom
machine language programs or built-in system routines stored in ROM
memory. It is essential to know the correct memory addresses and how
the machine language routines work before using SYS, as incorrect
usage can crash the system.

To pass parameters to machine language routines, you typically store
values in specific memory locations or CPU registers before issuing the
SYS command: 780 (accumulator), 781 (X register), 782 (Y register), 783
(status register/flags).

The number 96 for RTS (Return from Subroutine) ends the machine code
routine and returns control to BASIC. SYS expects the routine to end
with RTS, or the program may crash or behave unpredictably.

Example:

SYS 828 calls a user-defined routine at location 828

 SYS 64802 calls the ROM routine to reset the computer

TAB(TAB(<integer number 0-255>)

Type Short Appears Location Token HEX Token DEC

STRING T shift A T CAFB A3 163

TAB(moves the print position to a specified column on the screen. It is

used with the PRINT statement to control text layout. If the current print

position is already beyond the target, the cursor moves to the next line

before positioning.

Unlike SPC(x), which inserts a fixed number of spaces, TAB(x) directly

moves the cursor to the specified column: (the X+1 position) on the

current line. If X is less than the current cursor position, TAB() is ignored.

Example:

 1 PRINT TAB(5) "A" output is A

2 PRINT "A" TAB(5) "B" output is A B

TAN TAN(<number>)

Type Short Appears Location Token HEX Token DEC

NUMERIC --- E2B1 C0 192

TAN returns the tangent of an angle in radians. In a right triangle, the

tangent of an angle is the ratio of the length of the opposite side to the

length of the adjacent side. The TAN function can be used in BASIC to

compute this value for any given angle.

TAN(0) = 0 a flat line, 0 radians

TAN (π/4) = 1 45 degree angle, equal sides, ratio: 1

Example:

 1 INPUT "HORIZONTAL DISTANCE"; D
 2 INPUT "ANGLE IN RADIANS"; A

 3 PRINT "VERTICAL DISTANCE" D * TAN(A)

THEN IF<expression>THEN<line number or statement>

Type Short Appears Location Token HEX Token DEC

STATEMENT T shift H T --- A7 167

THEN is part of the IF-THEN statement structure, which is used to
separate the condition from the action that should be taken if that
condition is true. It can be followed by one or more commands that
should be executed if the condition is true.

If the condition is false, the command(s) after THEN are skipped, and the
program continues to the next line.

Example:

 1 INPUT "ENTER A NUMBER"; N

 2 IF N=>5 THEN PRINT "MORE THAN 4": END

 3 IF N<5 THEN PRINT "LESS THAN 5": GOTO 1

TIME TIME

Type Short Appears Location Token HEX Token DEC

NUMERIC T I TI --- --- ---

TIME (often abbreviated from TI) is a special function used to measure

the time interval since the last reset or power-on of the computer. It is a

system variable that stores the time in 1/60th second intervals.

TIME is read-only and cannot be set. Variable TIME$ can however be set

and the TIME variable will follow. For example, TI$="000000" will set TI

to 0. The TI value resets to zero when the VIC-20 is powered off or reset.

Example:

 1 PRINT "TIME ELAPSED (1/60 SECS): "; TI

 2 TI$= "000000" reset with TI$

 3 FOR T=1 TO 999: NEXT brief delay

4 PRINT "NOW: "; TI the time it takes to execute

TIME$ TIME$

Type Short Appears Location Token HEX Token DEC

STRING T I$ TI$ --- --- ---

TIME$ (often abbreviated from TI$) is a special system variable that

holds the current time of day as a string in the format HH:MM:SS, where

HH is hours, MM is minutes, and SS is seconds.

The time is based on the VIC-20's continuous internal clock. When the

computer is turned on, the clock starts at "000000" (midnight) and

begins counting from there. Resetting TIME$ resets TIME too.

You can set the time by assigning a string in the correct format based on

a 24 hour clock: for example, "153045" would represent 3:30:45 PM.

After 23:59:59, the clock wraps around to "000000" automatically.

Example:

 1 PRINT TI$ displays time elapsed

2 TI$= "000000" resets the time

3 FOR T=1 TO 999: NEXT brief delay

4 PRINT "NOW: "; TI$ the time it takes to execute

TO TO<number>

Type Short Appears Location Token HEX Token DEC

STATEMENT --- --- --- A4 164

TO serves two primary purposes: As part of a FOR-NEXT loop, and as
part of the "GO TO" construct (the same as GOTO). It defines the limit
of a loop or the line number of a GOTO statement. TO cannot be used as
a variable name or part of one.

Example:

 1 FOR A = 1 TO 10 as part of FOR TO NEXT loop

2 PRINT A: NEXT

 3 GO TO 1 as part of GO TO (GOTO)

USR USR(<number>)

Type Short Appears Location Token HEX Token DEC

NUMERIC U shift S U --- B7 183

USR calls user-defined machine language routines whose starting
address is stored in memory locations 1 and 2 (low byte and high byte of
the address, respectively) and returns a value when the subroutine
finishes. The subroutine receives the expression as an argument in the
floating point accumulator. The machine code routine can access this
argument and perform operations based on it. The result of the routine
must be placed back into the floating point accumulator before
returning, so BASIC can access the final value.

Example:

USR(8) calls a user-defined routine with a value of 8

VAL VAL(<string>)

Type Short Appears Location Token HEX Token DEC

NUMERIC V shift A V D7AD C5 197

VAL converts a string of numeric characters into a numeric value. It
scans the string from left to right, extracting any valid numeric
characters it encounters. Any non-numeric characters returns 0.

The first dot (.) is interpreted as decimal point and the first e or E as
exponent. It stops converting as soon as it reaches a character that isn’t
part of a valid number (like a letter or a space).

Example:

1 PRINT VAL("3") output is 3

2 PRINT VAL ("3.14") output is 3.14

3 PRINT VAL ("-7") output is -7

4 PRINT VAL ("ABC123") output is 0

5 PRINT VAL ("123ABC") output is 123

VERIFY VERIFY[“<file name>”[,<device>[,<number>…]]]

Type Short Appears Location Token HEX Token DEC

COMMAND V shift E V FFDB 95 149

VERIFY checks whether the data on a storage device (like a disk or a
cassette) matches the program stored in memory. It is typically used
after a program has been saved and needs to be checked for accuracy
when reloading. This is essential for ensuring the program has been
saved correctly and can be loaded back without errors.

Example:

 VERIFY checks first file on tape

 VERIFY "TEST" checks tape with file name

 VERIFY A$ tape program by string

 VERIFY "TEST" ,8 disk program

VERIFY "TEST" ,8 ,1 disk in same saved memory

WAIT WAIT<memory address>,<AND-mask>[,<XOR-mask>]

Type Short Appears Location Token HEX Token DEC

STATEMENT W shift A W D82D 92 146

WAIT pauses the execution of a program until a specific condition is
met. The memory location is usually linked to system variables that
track certain aspects of the computer, such as timing or input events.

The WAIT command with and-mask and flip-mask allows you to create
more precise conditions for when the program should continue. By
using bitwise operations, you can monitor specific bits in a memory
location and wait for changes. The and-mask is used in a bitwise AND
operation with the byte value at the given memory address. After
masking the byte, the flip-mask is applied.

Example:

WAIT 197, 64 wait until no key is pressed

WAIT 197, 64, 64 wait until any key is pressed

WAIT 653, 1 wait until SHIFT key is pressed

WAIT 198, 8 wait until 8 keys are in key buffer

OPERATORS

OPERATORS perform mathematical, logical, or string operations on data.

Name Appears Example Result

ADD + PRINT 5+3 8

SUBTRACT - PRINT 7-3 4

MULTIPLY * PRINT 6*7 42

DIVIDE / PRINT 20/4 5

EXPONENT ↑ PRINT 2↑3 8

EQUAL TO = PRINT 5=5 -1 (true)

LESS THAN < PRINT 4<6 -1 (true)

GREATER THAN > PRINT 7>9 0 (false)

NOT EQUAL TO <> or >< PRINT 5<>3 -1 (true)

LESS THAN OR
EQUAL TO

<= or =< PRINT 5<=5 -1 (true)

GREATER THAN OR
EQUAL TO

>= or => PRINT 8>=3 -1 (true)

AND AND PRINT 5AND3 1

OR OR PRINT 5OR3 7

NOT NOT PRINT NOT5 -6

CONCATENATE + PRINT"A"+"B" AB

