
Appendix F: wAx 2.1 Addendum

wAx	2.1	includes	the	following	changes:

• Go	(the	G	tool)	improves	stack	integrity	for	post-BRK	
continuation.

• The	Register	Editor	can	now	be	used	to	change	the	PC,	
to	aid	the	aforementioned	post-BRK	continuation.

• The	Register	Editor	now	provides	syntax	to	keep	any	
register	as	it	was,	without	providing	a	value.

• The	Register	display	now	includes	visual	
representation	of	processor	flags,	in	addition	to	the	
processor	flag	byte	value.

• Variable	substitution	for	addresses	now	allows	
hexadecimal	strings,	and	substitution	in	arithmetic.

• Two	"illegal"	instructions'	mnemonics	and	byte	sizes	
have	been	changed.

• A	buffer	overwrite	bug,	which	could	prevent	partial	
filename	search	from	working	in	emulated	
environments	(e.g.,	VICE)	has	been	remediated.

• Operand	arithmetic	(+/-)	now	allows	8-bit	operands.

• The	File	tool	has	several	enhancements.

• The	Character	Helper	plug-in	has	been	replaced	with	a	
Cycle	Counter	plug-in.

• The	Code	Search	now	allows	wildcard	matching.

• Two	subroutines	(SyntaxErr,	SetUserVal)	have	been	
added	to	the	API	jump	table.

Be	Excellent	To	Each	Other,

Jason

October	2023

wAx 2.1 Assembler for VIC-20 - Addendum

Go
 
.G

When	the	G	tool	is	invoked	with	no	address,	execution	
continues	at	the	address	specified	in	the	Register	Editor.	
The	return	address	to	BASIC	is	not	put	on	the	stack	with	
this	syntax;	rather	the	stack	is	left	as	it	was	after	the	last	
BRK	point.

Example

.A 1800 LDA #$55 
.A 1802 PHA 
.A 1803 LDA #$44 
.A 1805 BRK 
.A 1806 NOP 
.A 1807 PLA 
.A 1808 BRK 
.G 1800

This	will	push	$55	onto	the	stack	and	change	A	to	$44,	
at	which	point,	execution	will	break,	showing	A	to	be	
$44	and	PC	to	be	$1807	(two	bytes	after	the	BRK). 
 
If	you	then	continue	execution	with	G	alone,	the	$55	is	
pulled	from	the	stack	into	A. 

2

wAx 2.1 Assembler for VIC-20 - Addendum

Register Editor
Registers	may	now	be	set	with

.;ac [xr] [yr] [pr] [sp] [pc]

where:

ac	is	the	Accumulator	as	a	valid	hexadecimal	byte,	or	==

xr	is	the	X	Register	as	a	valid	hexadecimal	byte,	or	==

yr	is	the	Y	Register	as	a	valid	hexadecimal	byte,	or	==

pr	is	the	Processor	Status	Register	as	a	valid	
hexadecimal	byte,	or	==

sp	is	the	Stack	Pointer	as	a	valid	hexadecimal	byte,	or	==,	
but	has	no	effect	on	the	Stack	Pointer

pc	is	the	Program	Counter	as	a	valid	16-bit	hexadecimal	
address

For	any	register,	you	may	enter	==	instead	of	a	hex	byte.	
Doing	this	will	leave	the	register's	value	unchanged.

You	may	change	the	Program	Counter	before	issuing	G	
alone	(see	Go,	p.	2).

Note:	The	Stack	Pointer	is	not	changeable	because	there	
is	no	corresponding	pre-SYS	byte	available	for	it.	
Arguments	in	the	sp	position	are	ignored.

3

wAx 2.1 Assembler for VIC-20 - Addendum

Processor Status Display

The	Register	display	now	includes	on/off	annunciators	
for	five	processor	flags:

• The	Negative	flag	(N)

• The	Overflow	flag	(V)

• The	Decimal	flag	(D)

• The	Zero	flag	(Z)

• The	Carry	flag	(C)

When	an	annunciator	is	in	reverse	text,	the	
corresponding	flag	was	set	at	the	end	of	execution.	
Otherwise,	that	flag	was	clear.

Note:	wAx's	post-execution	code	clears	the	Decimal	flag	
because	the	BASIC	environment	cannot	function	if	the	
Decimal	flag	is	set.	If	the	Decimal	flag's	annunciator	is	
"on"	in	the	Register	display,	it	will	be	set	at	the	next	
invocation	of	the	G	tool.

4

wAx 2.1 Assembler for VIC-20 - Addendum

BASIC Variable Substitution
BASIC	string	variables	may	now	be	used	in	tools	where	
only	numeric	variables	were	previously	permitted,	
provided	they	are	valid	hexadecimal	addresses,	and	
provided	they	are	the	correct	length	for	the	context.

For	example:

S$ = "F27A" 
E$ = "F28A" 
.D `S$` `E$` 
 
A$ = "033C" 
.* `A$`

Note:	This	type	of	substitution	can	not	be	used	within	
the	A	tool	(Assembly	or	Memory	Editors).

Variable Substitution in Arithmetic

Additionally,	variable	substitution	is	now	permitted	in	
arithmetic	operands:

10 INPUT "LETTER NUM";N  
20 .A 1800 LDA #"@"+`N` 
30 .A * JMP $FFD2  
40 SYS 6144  

5

wAx 2.1 Assembler for VIC-20 - Addendum

"Illegal" Instruction Changes

Two	of	the	illegal	instructions	have	changed	mnemonics	
and	lengths.	These	are:

• $34	DOP	zero	page,x	is	now	SKB	(skip	byte)

• $3C	TOP	absolute,x	is	now	SKW	(skip	word)

Although	the	6502	treats	these	as	two-	and	three-byte	
instructions,	respectively,	wAx	will	assemble	and	
disassemble	(via	the	E	tool)	them	as	implied	mode	(one-
byte)	instructions.

This	allows	SKB	and	SKW	to	be	used	in	selectors.	For	
example:

.A * @P LDA #"%" 

.A * SKW 

.A * @C LDA #"," 

.A * SKW 

.A * @A LDA #"&" 

.A * JSR $FFD2  

6

wAx 2.1 Assembler for VIC-20 - Addendum

Operand Arithmetic
Arithmetic	operands	now	have	a	range	of	-FF	to	+FF.	For	
example:

.A 1800 STA $9000+5  

.A 1803 LDA ($FF-30),Y 

.A 1805 STA @V+0F 

.A 1808 LDX #"R"+80

7

wAx 2.1 Assembler for VIC-20 - Addendum

File Tool
Changing Device Number

The current device number can be changed with

.F #device

Where device is a four- or eight-bit hexadecimal number
between 8 and B (11). Subsequent disk operations (of the
File tool, the Save tool, and the Load tool) will use this
device number. Using another device number with a
BASIC command will also change the device number that
these tools use.

Running Disk Commands

A command can be sent to the current device with

.F command

Where command is a valid command for the device. For
example:

.F S:BAD-FILE 

.F R:NEW-FILE=OLD-FILE 

.F CD:../

After each command, the status line reported by the device
is displayed. Devices will have different capabilities and
status messages, so check the documentation.

Viewing Directories

For devices that support directories (SD2IEC, etc.),
directories are shown in reverse text followed by /. Find
directories in the current path with

.F "/"

8

wAx 2.1 Assembler for VIC-20 - Addendum

Plug-In: Cycle Counter

Cycle Counter shows how many processor cycles
were executing during the subroutine.The Cycle
Counter plug-in replaces the Character Helper plug-in
in wAx 2.

Installation 
.P "CY" 
 
Usage 
.U addr

where	addr	is	a	valid	16-bit	hexadecimal	address.

Cycle	Counter	will	count	the	number	of	cycles	in	the	
routine	at	the	specified	address	by	running	the	routine.	
The	count	does	not	include	the	RTS	at	the	end	of	the	
routine.	Routines	assessed	with	Cycle	Counter	should	
end	in	RTS.	After	65535	cycles,	the	count	rolls	back	to	0.

When	executed	in	direct	mode,	Cycle	Counter	will	print	
the	number	of	cycles	on	the	screen	as	a	decimal	number.

When	the	plug-in	is	invoked	in	a	program,	the	number	
of	cycles	is	stored	in	the	numeric	UU	variable,	instead	of	
being	printed	to	the	screen.

.A 1800 LDY #100 

.A 1802 @@ DEY 

.A 1803 BNE @@  

.A 1805 RTS 

.P "CY" 

.U 1800 
 501

9

wAx 2.1 Assembler for VIC-20 - Addendum

Code Search Wildcards
Code	search	strings	may	now	contain	any	number	of	
wildcard	characters	(=).	The	wildcard	with	match	any	
character.	For	example:

.H D000 LDA $6= 

.H E000 JS= $FF== 

.H D000 ==A ($==),Y

10

wAx 2.1 Assembler for VIC-20 - Addendum

Additional API Subroutines
SyntaxErr
Display context-sensitive syntax error

Call	Address:	$A039

Affected	Registers:	N/A	(ends	execution)

If	a	user	provides	invalid	input,	you	may	call	SyntaxErr	
to	inform	the	user	of	this	condition.

If	SyntaxErr	is	called	in	direct	mode,	wAx	will	display	a	
question	mark,	and	then	return	to	the	wAx	prompt.

If	SyntaxErr	is	called	during	program	execution,	a	BASIC	
?SYNTAX	ERROR	IN	LINE	nnnn	is	thrown.

SetUserVar
Set FAC1 and/or BASIC variable UU

Call	Address:	$A03C

Affected	Registers:	Accumulator,	X,	Y

Set	Accumulator	(high	byte)	and	Y	(low	byte)	before	
calling	SetUserVar.	SetUserVar	will	set	FAC1	to	the	
floating-point	representation	of	this	16-bit	value,	
regardless	of	operating	mode.

If	SetUserVar	is	called	in	direct	mode,	only	FAC1	will	be	
set.	If	SetUserVar	is	called	during	program	execution,	
the	numeric	variable	UU	will	also	be	set	to	this	value.	

11

	Appendix F: wAx 2.1 Addendum
	Go
	Register Editor
	BASIC Variable Substitution
	"Illegal" Instruction Changes
	Operand Arithmetic
	File Tool
	Plug-In: Cycle Counter
	Code Search Wildcards
	Additional API Subroutines

