VICKITII
USERS GUIDE

" COMPUTER
SERVICESLYD

VICKIT 11 Gsetr's manual

1 Geheral description

2 Installing, enablding and disabling VICKIT I1 on the VIC-28 (tm)
3 Quick reference guide to VICKIT II commands and statements

4 Using VICKIT II commands to enter and debuq programs

AUTO

DELETE

DUMP

FIND

HELP

OFF, STEP and TRACE
RENUMBER

APPEND

Differences between VICKIT II and BASIC Programmer's Toolkit (tm)
commands

5 Using VICKIT II statements to produce high resolution graphics

GRAPHICS
CLEAR

TEXT

SET, RESET and INVERT
POINT

LINE

DRAW

FILL

PUT

CIRCLE

6 Error handling by VICKIT II

7 Examples of programming with VICKIT I1I

8 Hints, tips and tricks

9 Conversion from or to other graphlc systems

.8 Information for machine code programmers

'TIC and VIC-28 are trademarks of Commodore Business Machlnes
IASIC Programmer's Toolkit iIs a trademark of Palo Alto ICs

VICKIT Il user's manual

General description

VICKIT II 1s a 4k (4896) byte EPROM (Erasable Programmable Read Only
Memory) which provides 21 new commands and statements for the VIC. Nine of
these are wused when entering and debugging a program while the other

twelve greatly simplify the programming needed to produce high resolution
graphics on the VIC,

VICKIT II makes a distinction between commands, which are typed {into the
VIC without a line number, and statements, which are always inserted in a
program., While some VIC BASIC commands can be wused as statements or
commands (CLR, NEW, PRINT etc), VICKIT II commands and statements will

only be recognised in their correct place. Thus using AUTO In a program or
GRAPHICS as a command will give a ?SYNTAX error.

The sections on VICKIT II commands and statements can be read separately
since they do not depend on one another to any great degree. However, you
should have read about errors and the LIST command In the next section
before starting to use VICKIT II statements. You are likely to learn most

from your mistakes and you should use the facilities provided by VICKIT II
to make the process as palnless as possible,

Throughout the manual a warning sign (WARNING) is wused to {ndicate a

section of particular importance, often a section where misuse of VICKIT
11 facilities could result in damage to your program.

Carefully read the section on installing VICKIT II before installing it in
your system. Once installed and enabled you can start to work your way
through the commands and statements. If you have some experience with the

BASIC Programmer'’s Toolkit for the PET you need only read the section

3iving the differences between VICKIT Il commands and the Toolkit commands
before starting to use the high resolutlon graphlics statements.

NARNING

JICKIT II uses a number of memory locatlons that are used by the VIC for
assette and RS-232 handling. HNelther of these features will work
rorrectly if used at the same time as VICKIT 1II commands or statements,

{ifowever, as 1long as the cassette/RS-232 operations are started and
finished BETWEEN VICKIT II commands/statements thére should be no problem

since VICKIT JI leaves no permanent Information iIn the relevant locatlons.

1:2

VICKIT 11 user's manual

Installing, enabling and disabling VICKIT II

Installing VICKIT 1X

Locate the empty Integrated circuit socket on your memory expansion board
where:VICKIT II s to be placed, If you have more than one socket |t
should: be the one located at addresses S$BOB8 (45056) to SBFFF (49151).
Refer to the documentatlion supplied with the memory board {f you are in
any doubt,

Touch any safely earthed piece of metal to discharge any static electrical
charge from your body. Carefully unpack the chip and examine fts pins. If
any pins are bent or out of alignment straighten them using narrow polinted
pliers VERY GENTLY. Integrated circuit (chlp) pins are fragile and will
fracture very easlly with bending. All VICKIT 1I chips are tested using
zero insertion force sockets before dispatch and are packed in riglid pin-
protecting tubes,

The VICKIT II EPROM

This dot marks pin 1

The chlp MUST be correctly orientated in its socket at $Bg@éB. Placing it
in the wrong socket will not harm the c¢hip but it will not work. However,
REVERSAL of the <chip In {its socket will probably DESTROY the chip
instantly by breaking down the stored program in the chip or damaging 1its
internal circuitry.

Take great care when inserting the chip into its socket. All of the pins
must be aligned simultaneously and slow firm pressure wused to seat the
chip. If you bend the pins at this stage they will probably break off when
you try to straighten them so DON'T BEND THEM.

If you haven't done this before and don't feel confident then get
assistance from someone who has experience of chip Insertion,

When VICKIT II has been Installed turn on the VIC-28. If the CBM BASIC

message does not appear TURN OFF AT ONCE and recheck the steps that you
took during installation,

Enabling VICKIT II

You enable VICKIT 11 by using the following command:

S5YS(11*%4896)
or SYS{(45856)

2313

VICKIT 11 user's manual

You should see a copyright message appear on the screen followed by the
READY prompt from the VIC and the flashing cursor. If this does not happen
TURN OFF AT ONCE and check both your installation of the VICKIT II and the

enabling command you gave. If all seems correct check that the socket you
have used for the VICKIT 1I Is the correct one.

If the VICKIT II still does not work you should contact the suppller of
the chlp for assistance.

Disabling VICKIT II

Having 4ust enabled VICKIT 1l it may seem strange discussing how to
disable it but such a step may be necessary for a number of reasons. You
might want to switch to a different set of ROMS or EPROMs which occupy the
same addresses in the VIC without switching off. VICKIT II slows down the
execution of normal BASIC programs so that you might want to switch it off
to speed up a section of programming., For whatever reason the followling
command (it can also be used as a statement iInside a program) will disable
VICKIT II with no harmful effects:

SYS (58459)

The READY prompt will now reappear {f you used the 5YS as a command. If
you incerporated the SYS in your program then the program simply continues
to run as normal. Both VICKIT II commands and statements will now be
reported as 7?SYNTAX errors.

Changes to LIST and error handling with VICKIT II enabled

When VICKIT II has been enabled the LIST command §s entered preclisely as
before but requires you to press CRSR down or STOP after each 1line is
listed. This means that you can LIST the program, or section of 1t, as
before but halt the listing i{f you see a line of interest, Press CRSR down
and the listing continues, press STOP and the VIC returns to normal. All
VICKIT 1I commands which print to the screen have this facility bullt in
to avoid the annoying occasions when the 1line you are interested In has
just scrolled off the screen and you have to re-enter the LIST command,
Should you want to LIST at full speed, perhaps to a printer, simply
precede the LIST command with a colon.

You will also notice that when you make an error the screen iIs cleared and
the error message printed at the top of the screen. This 1is so that when
an error occurs during high resolution graphics plotting the error message
becomes visible., Should you want to disable this facllity a method of
doing this i{s given in the section of this manual on error handling.

2: 4

Quick reference guide to VICKIT 11 commands and statements

For each command and statement the name of the command or statement s
given {(this {s the word you type to tell VICKIT II that you want that
particular command or statement) followed by the possible forms of the
command/statement,

VICEKIT II commands

AUTO AUTO
AUTO n
AUTO n,m

where n {s the starting 1line number and m is the step line
number. If n or m is not specified they default to 18,

DELETE DELETE n-
DELETE -m

DELETE n-n

where n is the lowest line number to be deleted and m 1{is the
highest line number to be deleted. 1f n iz not glven it defaults
te the first line number in the program, if m is not gqgiven it
defaults to the last line number in the program.

DUMP DUMP

FIND FIND ¢
PIND c'n-
FIND ¢,-m

where ¢ is a string elither with or without quotes, e.g. "DATE®" or
PRINT. n 118 the Jlowest number to start searching from, m the
highest., If n is not glven {t defaults to the first 1line number
in the program, if m is not glven it defaults to the 1last line
number in the program.

HELP HELP

OFF CFF

RENUMBER RENUMBER
RENUMBER n
RENUMBER n,m
RENUMBER n,m,-q
RENUMBER n,m,p-9q

where n iIs the starting line number for the renumbered program, m
iIs the 1line number step, p is the first 1line number to be
renumbered and q is the last line number to be renumbered. 1If n
or m are not given they default to 18, if p 1is not glven it
defaults to the first line number in the program and {f q Is not
given it defaults to the last line number in the program.

315

STEP

TRACE

GRAPHICS

CLEAR

TEXT

SET

RESET

INVERT

POIRT

LINE

DRAW

VICKIT I1 user's manual

STEP

TRACE

VICKIT XI instructions
GRAPHICS
CLEAR n
where n Is the number of the colour required, 1 for BLACK etc.

TEXT LOWER
TEXT UPPER

LOWER and UPPER may be abbreviated to L and U,
SET (x,Y)

where (x,y) is the polint to be SET.

RESET (x,Yy)

where (%x,y) is the point to be RESET.

INVERT ({X,Y)

where (x,y) is the point to be INVERTed.

POINT (x,y),variable

where (x,y) is the point whose status Is to be found and variable
is the name of a simple ({i.e. non-array) real variable.

LINE (x},vyl)-(x2,y2)
LINE (xl,yl}~{x2,vy2),c
LINE (x2l,yl)~-({x2,y2),c,0

wvhere (x1,yl) may be omitted 1in which case the current drawing
position ls substituted. ¢ is either S({ET), R{ESET} or I{NVERT)
and 1f omitted has a default of S({(ET). o 1is either B(0X) or
F(ILL).

DRAW stringexpression

where stringexpression is a string contalning a sequence of DRAW
Instructions terminated by colons or semi-colons. Each DRAW
instruction can be preceded by B or N and can be:

M Move Instruction, either absolute: M{x,¥): or
relative: Mx,y:

roc

3:6

FILL

PUT

CIRCLE

VICKIT 11 user's manual

R Up, Down, Left or Right line instructions followed by
a length or variable, e.gq. R1088: or R DX:. Two such

instructions can be separated by a comma, e.q.
R58,U58:

X to eXecute a string. X is followed by the name of the
string, e.g. X 88§

C to select a Colour for subsequent drawing, either
S{ET}, R(ESET) or I(INVERT), e.g. CS:

T to select a Turn for subseguent ¢, D, L or R
instructions, elither 8, 1, 2 or 3, e.g. T2:

5 to select a scale factor for subsequent U, D, L or R
instructions, either 6, 1, 2, 3, 4, 5, 6 or 17, e.q.
553

FILL (x,Yy)

FILL (x,Y).c

where (x,y) is the point at which to start filling and ¢ s the

colour at which to stop filling, efther S{ET) or R{ESET). If c is
omitted its default is S(ET).

PUT arrayelement direction (xl,yl)~{({x2,y2)
PUT arrayelement direction (x1,yl1)=-(x2,y2),rule

where arrayelement {is the name of an array element, efther
integer or real, e.qg. CHARA({2,8), direction is either > or <,
(x1,¥))—-{x2,y2) gives a palr of opposite corners of the area on
the screen in question and rule is a number in the range 8 to 15§
inclusive. If rule is omitted {t is taken to be 3 {f direction is
>, 5 if direction is <.

CIRCLE (x,y).,radius

CIRCLE (x,y),radius,c

CIRCLE (x,y),radius,c,height/width ratio

CIRCLE (x,y).radius,c,height/width ratio,start point

CIRCLE {(x,y),radlus,c,height/width ratio,start point,finish polnt

where (x,y) s the centre pcint of the circle, radlus 1is the
radius of the clrcle, ¢ gives the colour of the c¢ircle S(ET),
R(ESET) or I{NVERT), helght/width ratio gives the ratlo of the
height of the clrcle to the width (the width will always equal
the radius), start point glves the proportion of the way round
the clrcle to start drawing (CIRCLE starts at 3 o'clock and goes
clockwise) and end point gives the proportion of the way round
the circle to finish drawing.

If ¢ is omitted it is taken to be S{ET), !f helght/width ratlo Is
omitted {t i{s taken to be 1, if start point 1is omitted 1t is
taken to be 9 and 1f finish point iIs omitted It is taken to be 1,

3:7

VICKIT 11 user's manual

Using VICKIT II1 commands to enter and debug programs

VICKIT II is used in three stages of program development, while actually

entering the program, during testing of the program and when tidying up
the program to its final version,

This section of the manual illustrates these three stages by 1leading you

through the development of a typical program using VICKIT II. When a new
VICKIT II command is used it will be explained in detail with examples of
its use on the developing program.

The program illustrated here is one to find the day of the week on which a
given date fell and works for all dates after 1752, when there was a
change in the calendar. The program comes from the Independent PET Users'
Group magazine, volume 3 number 6.

You will need to enter the program, starting at line 16, with the second
line number being 28, the third 38 and so on. To avoid entering the line
number of each 1line (possibly getting it wrong and deleting a needed 1line)
use the AUTO command,

AUTO

There are three forms of the AUTO command, the first specifying
just the line number with which you wish to start, the second
specifying both the starting 1line number and the step between
line numbers (in the first case AUTO uses 10 as the step) and the
third specifying neither the start line number nor the step (AUTO
uses 1 for both}). VICKIT II then generates the next 1line number
for vyou whenever you press RETURN, starting after the AUTO
commang.

Before proceeding give the command:

NEW
To use the first form enter the command:

AUTO <starting line number>
For example, to start generating line numbers for our program
beginning at 18 with a step of 19 between lines simply enter the
command ;

AUTO 18
VICKIT II will respond with:

19 B

where B represents the flashing cursor. You can now enter the
first line of the program:

DIM DAYS(7):DAYS{1l)="SUNDAY" :DAYS(2)="MONDAY"

The VIC will take line 18 as the first line of your progtram and

4: 8

VICKIT 11 user's manual

VICKIT II will print the next line number for you. This will be
line 28 since we used the first form of the AUTO command and
VICKIT II takes 18 as the step between lines.

Now enter the second line of the program as follows:
DAYS(3)="TUESDAY™ :DAYS (4) ="WEDNESDAY" : DAYS (5) =" THURSDAY"

Line 28 will be taken in by the VIC and VICKIT II will print the
next line number for you, line 38, You could now go on and enter
the rest of the program but first let's look at AUTO In more

detail.

First of all, to stop AUTO operating press RETURN only {n
response to a line number. Pressing RETURN when VICKIT 1II prints
30 will not display 1line number 48 but will switch AUTO off,
Since typing a line number followed immediately by RETURN s the
standard BASIC way of deleting a 1line with that number we need
some other way to ‘turn AUTO off 1f there is the slightest chance
of deleting a wanted line and this other way is to use the DEL
key to delete the line number BEFORE pressing RETURN.

The second form of the AUTO command can be demonstrated by typing
in some lines of rubbish starting at line 306 and on lines 135, 460
and 45. The AUTO command to do this has the following form:

AUTO 38,5
VICKIT II will respond with:

30

to which you should enter anything you like (we will be removing
these 1lines of rubbish 1In the next section). Pressing RETURN
after entering line 39 will produce the next line number, line
35. Again type in some rubbish, press RETURN and continue until
VICKIT II prompts with 50, Now simply press RETURN and turn off
AUTO. You now have lines 3¢, 35, 48 and 45 which we do not want
in our final program. We could delete them line by line 1in the
standard BASIC manner but using VICKIT Il's DELETE command makes
things much easier,

The third form of AUTO has the form:

AUTO

which works in exactly the same way as the form:

AUTO 10,180

i.e. a starting line number of 18 and a step between lines of 18,

4:9

JELETE

IARNING

INRNING

VICKIT 1I user's manual

The DELETE command has a form, or rather a number of forms,

rather 1like the BASIC LIST command for 1listing a section of
program, If you wanted to LIST the unwanted lines in the program
you would enter the command:

LIST 38-45
or LIST 36-

since the unwanted 1lines go from line 32 to the end of the
program, To DELETE these lines glve the command:

DELETE 39-45
or DPELETE 3¢-

The unwanted lines will then have dlsappeared. Note that you can
only use the second form in this case because the lines to be
DELETEd run from line 33 to the end of the program. Had there
been lines after line 45 that you wanted to preserve the first
form would be needed.

You can also DELETE lines from the beginning of the program to a
certain line number, e.g.:

DELETE -28

If you gave thig command 9o back and insert 1lines 18 and 28
again.

The form of DELETE 1is exactly 1like that of LIST with two
exceptions: DELETE followed by just one 1line number will DELETE
from that line to the end of the program (typing only the 1line
number and pressing RETURN is easier) and entering DELETE on its
own will not DELETE the entire program since there is a perfectly
good BASIC command (NEW) for this,

DELETE N-M where N is greater than M, e.g. DELETE 288-108, will
corrupt your program. Always keep a backup copy of your program
before using DELETE.

jack to entering the test program again. Restart AUTO at 1line 38 with a
.ine number step of 10 using the command:

AUTO 38,18
or AUTO 3B

nter the following lines exactly as written, although not of course the
ine numbers since AUTO does that job for you:

3% DAYS$ (6)="FRIDAY" :DAYS (7)="SATURDAY" :D=p:M=p:Y=0

49 INPUT "DATE EG 28,11,1981";DAY,MNTH,YEAR:IF YEAR>=1753
THEN 60

68 PRINT "DATE MUST NOT BE PRIORTO 1753":GOTO 48

4:10

VICKIT II user's manual

60 KuINT(B.6+(1/MNTH)) :L=aYEAR-K:P=K/100

78 Z=wINT{Y3I*{MNTH+12*K+)1)/5)+INT{{(5%L)/4)~-
INT(P)+INT{P/4)4+DAY-]

B8 Z=Z-({7*INT(Z/7))+]

98 PRINT "THE DATE";D;M;Y:PRINT "WAS OR WILL BE” :PRINT
"A ";DAYS$(2)

180 PRINT “"ANOTHER DATE (YES OR™:PRINT *NO)";:INPUT ANSS

118 IF ANS$="YES"™ THEN PRINT:GOTO 48

128 IF ANSS="NO" THEN 150:REM EXIT

130 PRINT "DO IT PROPERLY":GOTO 108

148 PRINT "“GOODBYE"™ :END

158

Press RETURN only for line 158 to stop AUTO from generating any more line
numbers,

Now RUN the program and see what happens. Enter a few dates whose days are
known to you and you should find a number of errors. The most obvious one
is that the program does not work since it does not tell you the correct
day in all cases. The second error 1s that the date {s printed on the
screen as P, P and ¢ rather than the date that you typed In. If you have
added some errors of your own you may find the program not even glving an
answer.

In programming there are two main sorts of errors. The first iz an error
in the 1logic behind the statements in the program which means that
although the program RUNs the answers produced aré not the correct ones.
The second soxrt 1s an error in the actual program statement which the
BASIC Interpreter can gdetect. 1In this case a helpful error message |s
printed on the screen giving not only the type of error but the line {n
which it occurred. In general the filrst sort of error 1is the harder to
cure but VICKIT II provides three commands to help you while with the
second sort of error VICKIT II only provides one command. The sample
program has both sorts of errors and you will wuse all the relevant
facilities of VICKIT 1I to track them down.

To f£ind the flrst sort of errxor the commands DUMP, STEP and TRACE are used
and we shall look at the program first using the DUMP command. Walt until
you are asked by the program for the response YES or NO in line 1908 before
pressing the RIGHT HAND SHIFT and RUN/STOP keys to break out of the
program and get the READY prompt back again.

DUMP
To display the values of all varlables used by the program (all
simple wvariables that 1is, array variables are not DUMPed by

VICKIT II) give the command:

DUMP

You will find that the varlables used in the program so far will
be listed, one to a line, on the screen. After each one is listed

you can efther press the STOP key to stop the DUMP or press the
CRSR down Kkey to continue with the 1listing. With the simple
program above you will find the following being printed:

d:11

VICKIT Il user's manual

~
nx K K N

Z =
AN$="LOAD"

Variables except ANS$S will have values that depend on what
answers you gave to the guestions. Note that only the first two
characters of variable names are given in the DUMP, e.g. DA not
DAY and that string vari{ables are shown with their wvalue inside
inverted commas so that cursor and c¢olour control characters will
show up preoperly and can be altered using the screen editing on
the VIC. All types {real, integer and string) of wvarlables are
DUMPed by VICKIT 1I and you can alter any values on the screen as
if they were program lines. Thus a program can be stopped halfway
through 1its RUN, {ts variables DUMPed and examined, possibly
altered and then the RUN CONTinued,

ooking at the list of DUMPed variables you can see that DA, MN and- YE
ave the values that you last gave them In response to the INPUT statement
n line 4@ so why are they printed as 8, @ and 87 If we LIST 1line 92
don't forget to press the CRSR down key after the 1line is printed) you
an see that D;M;Y rather than DA;MN;YE was printed.

lter line 90 to print DAY;MNTH;YEAR and RUN the program again. You should
ind that the date being printed on the screen is correct but that the day
f the week belng glven is probably still wrong.

he last error in the actual calculation part of the program is of the
ort you would be unlikely to find using VICKIT II. The statement:

P=K/100
hould in fact be:
P=1/100

ince the statement is correct BASIC it will not cause an error so that
he only way that you would discover the error is if you knew the likely
alue of P, In fact it 1{is the number of centuries from B8 to the date
nput, e.g. for 1952 P would be 19, DUMPing the variables would help you
{scover that P was set to a value less than 1 and give a clue that the
roblem was with a statement which set P to a value, l.e. a statement
egqinhing P= (or LET P=)}. To find each statement In the program which sets
to a value you can use the fourth of VICKIT II's commands: FIND.

IND
Assume that you don't know on which 1line the statement P=K/180

occurrs., To FIND which line it is on give the VICKIT II command:

FIND P=

4312

>

VICKIT 11 user's manual

Note that there MUST be a space after FIND.

VICKIT 1II1 will then 1ist all the lines 1in the program which
contaln the section of programming P=. After each line s listed
you must remember to press the CRSR down key in order to carry on
or STOP to stop with the lines currently displayed on the screen,
The FIND command 1s of course much more useful i{n larger
programs, For example, suppose that the program you are writing
reqguires a varlable to be defined to hold a temporary wvalue, Can
you use the varliable DT? You could 1look through the entire
program for any uses of the variable DT, or {f you have been
systematic you would have written down each variable name as you
used it. With VICKIT II you have a third option, which allows you
to devote your time to programming, rather than to housekeeping,
Simply give the VICKIT II command:

FIND DT

and any lines of the BASIC program containing DT will be listed
on the screen. If no 1lines are listed then vyou can use the
variable DT freely.

You can also restrict the area of your program that VICKIT 11
will search when using FIND, After giving the section of
programming you are Interested {n type a comma followed by a
range of line numbers In the same form as you use for LIST and
DELETE. Thus to FIND any sections of programming which use P= |n
the lines 18 to 158 simply type the following command:

FIND P=;lﬂ_
or FIND P=,~159
or FIND P=,18-158

So far we have just looked for BASIC statements, or rather parts
of them, There s another form of FIND which will look for
strings in your BASIC program. Strings will occur in a number of
place, most obviously 1In quotes, e.qg. "DATE EG" in 1ine 48.
However they can also occur in REM and DATA statements for the
following reason: when vyou ¢type in a line of BASIC the VIC
normally converts BASIC keywords and operators, e.g. 1IF, THEN,
PRINT, =, * and 4+, into single characters called tokens., For
example when the word PRINT is converted into a token, the five
locations that would be used to store PRINT as single characters
are reduced to one holding the token for PRINT., Tokens also speed
up the execution of your program. However when you type PRINT
within inverted commas, or in a DATA or REM statement, this
'crunching' 1into tokens {s not performed, and PRINT will be
stored as five separate characters.

Because of tokens you can see that there could be two forms of
the character P=., The first would be when P= has appeared as a
BASIC statement and the = has been replaced by its token. The
second will be when P= has appeared within quotes, or in a DATA
or REM statement, when the = will not have been replaced by lits
token.

4:13

VICKIT 11 usetis manual

So far we have been FINDing the first form but VICKIT 1II will
also FIND the second provided that you enclose the string to be
search for within guotes, e.g.:

FIND "p="

This crunching into tokens means that you <cannot FIND parts of
BASIC keywords, e.qg.:

FIND TH

will not FIND all the lines containing THEN but only 1lines 28,
46, 66, 78, 98 (if you have corrected it) and 1060.

If you are going to restrict the range of 1lines to be examined
when using the second form of FIND you must remember to place
both the comma and the line numbers after the closing quotes.

JARNING
The line:

IFX>BTHEN 26
is NOT the same as the line:
IF X>86 THEN 2@
since spaces are significant to FIND.

Experiment with FIND, i{in both forms, until you understand why it
lists some line and not others depending on what you type and
whether you use gquotes or not,

laving altered the error in line 98 you can proceed to check the rest of
he program. You will probably have answered YES to the question 1in line
.68 already, so now enter NO and press RETURN. You should find that the
)rogram clears the screen, prints an error message and stops. Now you can
iIse the fifth command provided by VICKIT II: HELP.

JELP
The HELP command is only of use when you have Jjust had an error
reported by the VIC. Type the command:

HELP

The line iIn error will be listed on the screen and the section of
the line in error highlighted in reverse field. The HELP command
must be the first thing executed after an error otherwise the
information needed by VICKIT 1I may have been destroyed or
altered.,

You may find that he highlighted section of the line 1listed may

4:14

VICKIT 11 user's manual

be just before or after the section of the line in error but the
information given by VICKIT I1, together with that given by the
VIC, should be enough to 1let you Jlocate the error. If a BASIC
keyword 1s {n error then the entire keyword will be highlighted,

The sixth command that VICKIT II provides {8 really only useful when used
in" conjunction with STEP and TRACE 60 we {gnore OFF for the moment and
return to it later, The seventh command is RENUMBER:

RENRUMBER

WARNING

RENUMBER is the command which, as {ts name suqgests, RENUMBERs
the line numbers in your program. In order that the program still
works it also RENUMBERsS the destination 1line numbers {{n GOTOQ,
GOSUB, LIST, RUN and IF...THEN statements,

There are 6 forms of the RENUMBER command ranging from a simple
command to RENUMBER the entire program starting at line 18 with a
step between 1line numbers of }8 to-a version that lets you
specify the range of line numbers to be RENUMBERed, the starting
line number and the step between line numbers.

The simplest form 1s the command:
RENUMBER

which, since no range of line numbers has been given, RENUMBERs
the entire program in memory, starting at 1ine 18 (since no
starting line number has been glven) with a step between llines of
12 (since no step between line numbers has been given). Since the
original program started at line 18 and had a step of 1@ betwen
line numbers there should be no change in the program, except
that if you had not corrected the error in line 1280 the line
number to GOTO {f ANSS was "NO" would have become 8. If, when
RENUMBERing a program or section 8f program, VICKIT 11 dlscovers
a reference to a non-existent line number that line number is
replaced by #. You can use FIND to FIND any errors caused this
way by giving the command:

FIND * 2"

although this will only work 1f you follow every GOTO, GOSUB or
IF...THEN with a space (good practice anyway).

The second form of RENUMBER allows you to specify the starting
1ine number. An example of this form is:

RENUMBER 108
The first llne of t 118, the third 126 and so on.

Using ¢ as either the start line number or the step between line
numbers will result in your program being corrupted,

4315

[ARRING

VICKIT 11 user's manual

The third form of RENUMBER allows you to specify both the
starting line number and the step between line numbers. The step
is separated from the starting line number by a comma, e.q.:

RENUMBER 2806,5

will RENUMBER the entire program starting at line 200 with a step
between lines of 5.

The last three forms are really variatlions of the same baslic
theme which allow you to speclify the range of line numbers that
RENUMBER works on. This means that RENUMBER can be made to
RENUMBER sections of your program rather than the entire program.

As with DELETE, LIST and FIND the range can be specified 1in one
of three forms:

<lowest line number>-<highest line number>
or {lowest line numberd-

or ~<highest line number>

the first form using lines from the first to the second number,
the second from the first number to the end of the program and

the third from the start of the program to the first number. All

the numbers gliven are inclusive. The three forms of RENUMBER are
illustrated by:

RENUMBER 10068,10,1086-1999
RENUMBER 16649,16,10808-
RENUMBER 1880,18,-1999

By specifying the range of line numbers that RENUMBER iIs to work
with vyou can preserve the structure of your program, leaving
subroutines to start at easily remembered lines for instance,

These three forms of RENUMBER can be damaging to both your sanity
and program if misused, For example, consider the program:

18 I=1
28 PRINT 1
38 I=I+1:IF 1<108 THEN 260

If we gilve the following command to VICKIT IIl:
RENUMBER 40,18, 28-22
the result is:
19 I=}
40 PRINT 1
30 I=I+1:1IF I<18@ THEN 48
which looks correct, ${f a little strange, In fact this program

will not RUN, since the VIC will report a ?PUNDEFINED STATEMENT
error in line 38.

4:16

VICKIT 11 user's manual

The moral of this is that you should be extremely careful when
using the restricted range form of RENUMBER since no error
checking is built In to the RENUMBER routine in VICKIT 1II. As
with DELETE it is a g¢good ldea to save your program before you
attempt this sort of RENUMBER on your program.

The final three commands (STEP, TRACE and OFF) are best dealt with {n one
fell swoop since they are so closely related. All three are used during
the debugging of a program since TRACE and STEP allow you to monltor the
progress of your program while it 1s actually RUNning by displaying the
line numbers of the last five lines executed by the VIC. Thus you can sece
which way your program is ‘going® by finding out which lines are belng
executed.

TRACE and STEP work 1In basically the same way and are started in much the
same way. Decide which one of the commands fits the particular
circumstances of your program and type its name as a command. When you
next RUN the program the command selected will come into action. Once the
program has been debugged the chosen option can be disabled by wusing the
OFF command. |

STEP
Typing:
STEP
starts STEP working when the program is next RUN, When the
program is RUNing the numbers of the last five 1lines executed
will be displayed In the top right hand corner of the screen.
Before each statement s executed by the VIC VICKIT II will test
the left hand SHIFT key. I1f it {5 pressed then the statement will
be executed. If not then execution of any further statements will
be stopped until either the left hand SHIFT key or the STOP key
is pressed.
TRACE
Typing:
TRACE
starts TRACE working in exactly the same way as STEP except that
the left hand SHIFT key now acts to slow down the rate at which
the VIC executes the lines of your program rather than speed up
the rate as with STEP.
OFF
Typing:
OFF
simply cancels whichever of the two commands STEP or TRACE was
last selected. RUNnlng the program then proceeds as normal.
WARNING

Note that with both STEP and TRACE the line numbers are displayed

§:17

VICKIT II user's manual

in white on black in the top right hand corner of the screen. For

certain colour comblnations these numbers may become invisible,
Also note that any INPUT statements which take effect In the top
5 lines of the screen may INPUT the line numbers there. Finally
one of the side effects of STEP or TRACE is to make the STOP key
become a little sluggish, so that it may have to be held down for

longer than normal.

4:18

VICKIT 11 user's manual

APPENDIing programs on the VIC

Although there Is no APPEND command provided by VICKIT II, the following
proceddfe can be used to APPEND either from tape or from dlisk.

For those users unfamillar with the Toolkit APPEND allows you build up a
program by APPENDIng sections of programming together, You will probably
have notlced by now that some sections of programming are common to more
than one program and you may have wondered {f there was any way to avold
typing in the same sections of programming over and over again. both
APPEND on the Toolkit and the procedure below for the VIC provide that way

for you,

The only restriction on this method of APPENDing BASIC programs {s that
the line numbers In the program you are APPENDing must be larger than the
ones in the program to which you are APPENDing. Fafilure to observe this
restriction will result iIn programs with duplicate lines and lines out of

order.

The APPEND procedure

1 SAVE the program that you wish to APPEND te <cassette or to disk
with SAVE "name® or SAVE "name",B respectively.

2 Enter the program to which you wish to APPEND the result of step
1] elther by LOADiIng from cassette or disk or by typing 1in the
program.

3 Give the following command:

PRINT PEEK(43),PEEK{44)

and make a note of the two numbers printed (they are referred to
as A and B later on).

4 Give the following command:
PRINT 256*PEEK({46)+4PEEK(45)-2
and make a note of the result (referred to as C in step 5).
5 Give the following commands:
POKE 43,C AND 255:POKE 44,INT(C/256) sNEW

where C §s the result you noted down in step 4.

6 Give the command:

LOAD "name”™
or LOAD "name®, B

where name is the name that you used In step 1. Use the first

form If you are LOADiIng from cassette, the second if you are
LOADiIng from disk.

4

19

VICKIT 1I user's manual

7 Give the following command:
PRINT FI 7 (2)

If you see a negative number displayed then the last program you
APPENDed was too big for the VIC you are using., Give the

command :
NEW
then step 8 of this procedure and your original program will be
back,
8 Finally give the command:

POKE 43,A:;POKE 44,B:CLR
where A and B are the numbers that you noted down in step 3.

You will now have a new program consisting of the original program with
the APPENDed program added to its end. You can repeat this process as many
times as you want subject only to the amount of memory on your VIC.

WARNING
Always SAVE a copy of your original program before APPENDing

since this method alters information about your program needed by
the VIC,.

If you get a ?LOAD error in step 6 give the command:
NEW
followed by step 8. Thlis restores the original program and should

also be given 1{f you mistakenly APPEND a program section with
lines out of order.

4:20

VICKIT 11 user's manual

Differences between VICKIT II and BASIC Programmerts Toolkit commands

AUTO
The default starting line number is 18 rather than l@@.
Line numbers will only be generated by AUTO in the period between
enabling AUTO and disabling it.
Screen editing will not produce unwanted 1line numbers and AUTO
will remember nelther the last line number 1t generated nor the
last line number step used.
DELETE
DELETE n where n is a 1line number DELETEsS from line n to the end
of the program,
DELETE n-m where n is greater than m will corrupt the program.
DUMP
DUMPIng will stop after each 1ine printed until the CRSR down key
is pressed.
FIND
A space MUST follow the command word FIND,
Enclosing a character string §in quotes does not restrict the
search to strings within quotes 1in the BASIC program. Thus the
command:
FIND "A"
will FIND the statement A=B as well as the statement PRINT
“ANOTHER". The quotes are needed only to protect the character
string from being crunched to its token form.
Listing of lines stops after each line until the CRSR down key is
pressed.,
HELP
HELP is lilnked in to the error vector so that gliving the HELP
command after pressing STOP will not list the last llne executed.
RENUMBER
The range of line numbers to be RENUMBERed can be restricted.
Setting efther the start or step line numbers to 8 will result in
VICKIT II corrupting the program,
STEP
TRACE
OFF

No known differences.

The abbreviated forms availab{e to other VIC commands and the Tecolkit
commands, e.g. V SHIFT E for VERIFY or A SHIFT U for AUTO, are not
available on VICKIT 1.

4321

VICKIT II usert's manual

Using VICKIT II statements to produce high resolution graphics

VICKIT II adds twelve new statements to BASIC whilich allow vyou to wuse the
high resolution graphics capability of the VIC as easlily as possible,
These statements make up a language which works with lines and points
rather than numbers and strings as does BASIC,

when using high resolution graphics on the VIC you should think of the
screen as 176 points wide by 169 points high rather than 22 columns wide
by 23 rows high with the origin (2,0) almost at the bottom left of the
screen, Statements allow you to SET (make dark), RESET (make 1light) or
INVERT (make light dark and dark light) any point on this screen and for
some purposes, graph plotting ete, SET, RESET and INVERT will be useful
commands, Usually however the more powerful commands LINE, DRAW and
CIRCLE will be used since they do with single statements what would
otherwise take tens or hundreds of SET, RESET and INVERT statements,

Once a shape or picture has been drawn on the screen it c¢an be FILLed in
or PUT in a BASIC array with a single BASIC statement. The shape can then
be moved to another place on the screen (a collision with another shape
can be detected) and even mirrored about a horizontal or vertical line. As
we shall see when we discuss PUT this statement can even be used to
produce characters on the high resolution screen as well as graphics. Thus
graphs, shapes or pictures can be annotated easily and quickly, with
elther the normal VIC characters or a set of characters you have defined
yourself,

To draw things on the VIC you must prepare both the VIC and vyour program
for high resolution graphics and the first two statements wo look at,
GRAPHICS and CLEAR, allow this.

One £final polnt needs to be made before you start using VICKIT II
statements. With a statement like:

129 IF X<f THEN ...

where ... represents any of the VICKIT II statements to be introduced in
this section you should ALWAYS follow THEN with a colon, e.g.:

106 IF X<8 THEN : ...

This corrects a slight problem caused by the VIC's handling of IF
statements whlch could otherwise mean the ... part of the statement belng
handled incorrectly.

GRAPHICS
This statement has only one form:

GRAPHICS

and it should be the first statement in any program which is
going to use high resolution graphics. You need only know that
its effect 1s equivalent to a BASIC CLR statement so that If you
have defined any variables BEFORE using the GRAPHICS command they
will be undefined AFTER {t. For example:

VICKIT 11 user's manual

100 XM=175:YM=159:GRAPHICS :PRINT XM, YM:END

will print @ as the value for XM and ¥YM since although they have
been set to 175 and 159 respectively the GCRAPHICS statément does
a CLR and they become undefined. This effect also means that you
cannot place GRAPHICS within a subroutine and use RETURN since
GRAPHICS destroys the information that RETURN needs,

WARNING
If you do not include the GRAPHICS statement {n your program and
you then go ahead to use any other VICKIT 1II statements you are
asking for trouble and your program will probably becomne

corrupted.

If you are writing machine code for the VIC, using any technique
that depends on where a BASIC program or its variables are stored
or are just curious about the work that GRAPHICS does you should
read the section of thls manual entitled Information for machine
code programmers,

GRAPHICS does not seem to do anything although its inclusion is essential
in a high resolution graphics program. The second VICRIT Il statement
(CLEAR} is also essential and glves the first indication of VICKIT II
actually doing something,

CLEAR
This statement has eight possible forms varying with which colour
you want to draw lines and shapes. Follow the -statement CLEAR
with a number from 1 to 8. This number corresponds exactly to the
colours shown on the keys 1 to 8 on the VIC keyboard, Thus use
number 1 for BLACK lines, 2 for WHITE, 3 for RED and so on, up to
8 for YELLOW, Thus the form of the CLEAR statement is:

CLEAR ¢

where ¢ §is a number or varlable with a value of 1 to 8 inclusive.
1f you use a number larger than 8 but less than 17 the statement
will still be executed but the VIC graphics will then work in
what is called MULTICOLOUR MODE (see Hints, tips and tricks).

You will notice that the screen appears to shrink in height and
will immediately clear when the CLEAR statement is executed, The
VIC's high resolution graphics are now working so that any
attempt to PRINT anything to the screen will not produce the
effect you want,

To make your program easy to understand it is a good {dea to
define wvariables with names that suggest the eight colours
possible and values that give the correct colour when used with
CLEAR, €.g.:

118 BLK=1:WHT=2:RED=3:CYN=4:PUR=5:CRN=6:BLU=7:YEL=8

and then use CLEAR with the correct variable, e.g.:

5:23

VICKIT 11 usetr's manual

120 CLEAR BLU

to clear the high resolution graphics screen and set the colour
of lines to be drawn to BlLUe,

Having just made the VIC's high resolution graphics work the third VICKIT
I1 statement (TEXT) stops the VIC working in high resolution graphlcs and
returns 1t to the state where normal PRINT statements work on the screen.
This automatically happens on an error once VICKIT 1II is enabled (unless
you have disabled this feature) so that you can see exactly what error
message 1s printed by the VIC,.

TEXT
The TEXT statement has two forms, depending on whether you want
to be PRINTing to the screen using LOWER case letters as normal
(with upper case produced by using the shift key) or PRINTing to
the screen using UPPER case letters {with the shift key producing
graphics characters). These two forms are:

TEXT LOWER
and TEXT UPPER

where you can shorten LOWER and UPPPER to L and U respectively,
When executed either of these statements clears the screen,
resets the VIC to its normal 22 column by 23 row text screen and
sets either LOWER or UPPER case for unshifted characters
depending on which form you used.

A program using VICKIT II statements will start with a GRAPHICS .statement
to prepare the VIC for hlgh resolution graphics, use CLEAR statements
whenever a clear graphics screen is needed or when changing from a text
screen {you can use PUT to save or restore an entire graphics screen Image
1f you want to) and TEXT statements whenever the program reverts to
printing normal text on the screen. Programs should always make sure they
do a TEXT statement before ENDing or STOPping. If vyou press STOP while
using high resclution graphics the simplest way to return to a normal text
screen 1s to press the RESTORE key while holding the STOP key down.

Now you can set the VIC to work with high resolution graphlcs it 1is time
to Introduce the first three statements will actually produce something on
the screens SET, RESET and INVERT, These three statements have very
similar forms so we deal with them all at the same time,

SET,
RESET and
INVERT
These three statements have the following forms:

SET (X,Y)
or RESET (x,Yy)
or IRVERT (x,vy)

wvhere ¥ and y are the x and y co-ordinates of the point to be
elther SET, RESET or INVERTed.

5324

VICKIT II user®'®s manual

Using SET will result in the point {x,y) taking on the colour
specified In the last CLEAR statement., RESET results {n the point
(x,y} taking on the colour of the screen background ({(this {is
usually white unless you have used the POKE command or statement
to alter the screen and/or frame colours as shown on page 134 of
the PERSONAL COMPUTING ON THE VIC-28 handbook supplled with your
VIC). Using INVERT will take the colour of the point ({x,y) and
invert {t, {.e. if It §is the colour of the screen background
INVERT makes it the colour last specified In a CLEAR statement
while 1f §it is the colour 1last specified In a CLEAR statement
INVERT makes it the colour of the screen background,

Values for x and y can be elther numbers, e.g., (188,1828),
variables, e.g. (X,Y) or expressions, e.g. (I+2,J-2). Thus this
sample program draws a box in the middle of the screen:

18 GRAPHICS :REM ALWAYS FIRST STATEMENT
20 CLEAR 7 :REM DRAW BLUE ON WHITE
38. FOR X=88 TO 100

48 SET (X,88)

58 SET (X,108)

68 NEXT X :REM BOTTOM AND TOP

78 FOR Y=88 TO 188

80 SET (88,Y)

99 SET (180,Y)

1868 NEXT Y tREM LEFT AND RIGHT SIDES
119 GET A$:IF AS$="" THEN 110

128 TEXT LOWER

138 END

After the box has been drawn line 118 walts until a key is
pressed before wusing TEXT to return the VIC to a normal TEXT
screen., Although each VICKIT II statement Is on a separate 1ine
the program will work properly {f as many as possible are crushed
on to a llne, although the result may not be terribly easy to
understand.

Looking at the program you can see that the four points at the
corner of the square ({(88,80), (1068,88), (l@éP,l188) and (80,180))
will have been SET twice. SETting a point that Is already SET or
RESETting a point that is already RESET has no effect. However
alter the SET statements in lines 48, 58, 88 and 98 to INVERT and
se¢ what happens. INVERTing a polint twice is equlvalent to
leaving the point as it was, SET or RESET, so the vertices of the
square atre not SET but RESET.

You should also notice that although the shape drawn on the
screen should have been square it looks more like a rectangle.
Each side of the shape Is 208 units 1long, where a unit {s the
length between one dot and the next one, but the slze of
horizontal and vertical dots differs. If you compare the physlical
lengths of a horizontal and a wvertical line of the same drawn
length you should find that the vertical line measures about 8,6
of the horizontal line. To get a more realistic square the loop
in line 38 should read:

58125

VICKIT II user's manual

38 FOR X=80 TO 92
and line 96 should be:
990 SET (92,Y)

Using VICKIT Il statements you can now SET, RESET or INVERT any point on
the screen. Perhaps you may have wondered what happens if you try to SET,
RESET or INVERT a point which is not on the screen, 1l.e. a point (x,vy)
where either x is out of the range 8 to 175, y is out of the range @# to
159 or both are out of their respective ranges, If VICKIT II gets an x or
y coordinate which i1s out of its true range but inside the range 8 to 255
the offending coordinate is replaced by 175 1If it is an x coordinate and
159 if it is a y coordinate., If a coordinate is out of this extended range
a P7ILLEGAL QUANTITY error is reported. If vyou are plotting a curve or
shape and unexpected lines appear at the top or right of the screen this
is a signal that you are trying to plot points out of range.

Once you have used SET, RESET and INVERT you might want to find out in
which state a point is on the screen. Is it SET or RESET, i.e. the colour
specified In the last CLEAR statement or the background screen colour? The
VICKIT IX statement POINT provides a means for getting this information,

POIRT
The POINT statement has only one form:

POINT (x,y),variable

where (x,y) are as described before and variable is a real, non-
array variable, e.g.:

POINT (128,188),PT
but not:

POINT (120,180),PT%
Or POINT (108,188),PT(8,0)

When the POINT statement has been executed the variable used will
be set to £ if the point specified was RESET, 1 if it was SET and
-1 if the point specified did not lie on the screen. These three
values mean that you can then use the BASIC ON statement as in

this example:

198 POINT (1860,169) ,PT:ON PT+1 GOTO 12088,2888,3600

which will GOTO line 1880 if the point was off the screen, 23568
if it was RESET and 39¢p if it was SET.

When the PUT statement s introduced vyou will have a more
powerful technique for detecting the state of a point or group of
peints on the screen but until then POINT will suffice,

5226

VICKIT II user's manual

The flve remalning statements provided by VICKIT II are LINE, DRAW, FILL,
PUT and CIRCLE,.

LIRE

Using LINE you can draw lines, boxes (squares or rectanqgles) and
filled-in boxes, The form of a LINE statement to draw a line from
the point (x1,yl) to the point (x2,y2) is:

LINE (x1,yl)-(x2,y2),colour

where {xl,yl) can be omitted (the -~ sign cannot) and colour |s
either S (SET), R (RESET) or I (INVERT). If vyou omit colour you
must also omit the comma and colour is taken to be S(ET). The
program which drew a small box in the previous sectlon can now be
rewritten as:

18 GRAPHICS

28 CLEAR 7

3¢ LINE (88,88)-(186,88),S
48 LINE (198,80)-(108,108),S
58 LINE (1@6,108)-(80,108),S
66 LINE (80,100)-(88,88),S
70 GET A$:IF A$="" THEN 78
88 TEXT LOWER

0p END

I1f you omit (xl,yl) then the coordinates of the end point of the
last LINE or updated DRAW (see next sectlon) are substituted.
Another version of the box drawing program replaces lines 48, 59
and 68 of the above version with:

48 LINE -{186,188),5
58 LINE ~(88,1e8),S5

The ,5 in all the above lines could also be omitted.

Drawlng boxes Is such a common requirement that a speclal form of
the LINE statement allows you to draw a box with one statement:

LINE (x1,vyl)-(x2,y2),colour,option

where option is elther B (BOX) or F (FILL). With B a box is drawn
with four lines from ({x1,yl) to ({x2,vl), (x2,yl) to (x2,y2},
(x2,y2)} to (x1,y2) and finally ({x1,vy2}) to (xl1l,yl). The endpoint
of the last LINE drawn is then (xl,yl) and this 1is used 1If a
future LINE statement omits (x1l,yl).

With the F option a £i{lled-in box Is drawn by drawing horizontal
lines from left to right and bottom to top so that the endpolint
of the last LINE drawn 1s (x2,vy2).

The DRAW statement provided by VICKIT 1II takes a series of instructlions

held

in

a string and produces a shape by Iinterpreting each of these

instructions. These strings can be stored on cassette or disk and a

5t 27

VICKIT Il user's manual

general purpose drawlng routine used to draw them rather than a specific
program producing each specific shape., Since the instructlons are stoted
as strings they can be manipulated by the program itself, so part of the
string can be drawn, part erased and so on. You can use DRAW simply but it
will amply repay the effort needed to use it to its full extent.

DRAW
The form of the DRAW statement is quite simple:

DRAW stringexpression

where stringexpression can be a string constant, string varilable
or string expression, e.g.:

*"R28:U10:L5:U18:L10:D18:L5:Dlg:"™
or AS
or "B*+AS+%R1B:U10:L1B:D1B:"

As the last example shows vyou can use string concatenation to
'add' shapes together. You could also use LEFTS$, RIGHTS and MIDS
to 'subtract' parts of a shape or select parts of a shape for
drawing.

As suggested by the examples above the stringexpression consists
of a number of jinstructions separated by colons {or semi-colons).
Fach lInstruction starts with one of the following, possibly
preceded by B or N:

Move

Up
Down
Left
Right
eXecute
Colour
TUurn
Scale

SR NeR I o N ol w il adic 4

If an instruction which normally produces a lihe (M, U, P, L or
R) is preceded by B (for Blank) then the 1line no 1longer appears
(this is most often used with M) while 1£f an fInstruction which
normally produces a change in the current position {s preceded by
N (for No update) that instruction no longer produces the change.

DRAW instructions

M
The Move instruction has two forms, depending on whether an

absolute move or a relative move iIs required. The absolute
move has form:

M(x,y):

where (X,y) 1ls the polnt to be moved to. Unless B precedes
the M a 1line will be drawn £from the current drawing

5:28

Irgpgc

VICKIT 11 user's manual

position to the point (x,Yy).
Relative moves have the form:
MX,Yy:

where x and y are displacements which are added (or
subtracted {f preceded by a minus sign) to the current
position to produce the point to be moved to. Again a
visible 1line is drawn unless the B optlon is used.

Nelther absolute or relatlive Moves are affected by the
current Scale oy Turn.

To illustrate DRAW here is another way to produce the box
drawn Iin the previous section:

128 GRAPHICS

20 CLEAR 7

38 DRAW "BM(B8,88):M20,0:M0,20:M~-20,0:M8,-28:"
48 GET AS:IF AS="" THEN 48

58 TEXT LOWER

68 END

Where a number 1s wused as the displacement In relative
moves the + sign only may be omitted but if wvarlables are
used the + and/or -~ signs must be included,

The Up, Pown, Left and Right instructions are used {n DRAW
to produce shapes which are ‘'relocatable' and can be drawn
anywhere on the screen, Obviocusly an absolute Move
instruction will only draw at one place on the screen and
while relatlive Moves can produce shapes which are
relocatable the shapes cannot be Scaled and Turned.

You will probably have guessed by now that Right draws a
line to the right, Up draws a llne up, Left a line left and
Pown a line down so here is yet another way to produce 2
small box in the middle of the screen:

16 GRAPHICS

20 CLEAR 7

30 DRAW "BM(80,80):R29:U2P:L28:D20:"
486 GET AS:IF AS="" THEN 48

58 TEXT LOWER

68 END

5:29

VICKIT II user's manual

You are not restricted to DRAWIng lines Up, Down, Left or
Right since you can combine a vertical 1line (Up or bown)
with a horizontal one (Left or Right) to produce a sloping
one, If you separate a Left or Right Instruction from an Up
or Down Instruction by a colon (or semi-colon) they are
DRAWNn separately, so that:

"R1GB:V180:"

DRAWS a 1line to the Right and then a 1line Up. If you
separate the two instructions by a comma:

"Ri¢J,U)08:"™

the line that is DRAWn 1s a diagonal one, Up 188 units and
Right 188 units. The following DRAW Instructions DRAW a
trianglie on the screen (L or R MUST come first):

"R48:030:L40,D39:"

You can of course precede any Up, Down, Left or Right
instruction, whether combined or not, with B or N (the
combination B and N makes very 1little sense). The values
that are used for the lengths can be constants, e.g. 188,
49 or 3¢ as used above, or variables but must not Include a
sign since the U, D, L or R tells DRAW which way to move.
Using variables with Up, Down, Left and Right means that
one string can be used to DRAW different sized shapes, e.qg.
by setting SIDE to a suitable value the instructions:

"R SIDE:U SIDE:L SIDE:D SIDE:"

wlll always DRAW a square of size SIDE (spaces can be
freely used Iin DRAW instructions) with its bottom left hand
corner at the current DRAWIng position.

The eXecute iInstruction allews you to perform the
equivalent of a BASIC GOSUB instruction within a string of
DRAW instructions. It is followed by the name of a string
variable which must also hold one or more DRAW
instructions. DRAW will then interpret the instructions in
this new variable and when finished return to the original
string. The ‘'subroutine string' can also contain an X
instruction and this nesting can be repeated, although If
not enough space is available In the BASIC stack a ?0UT OF
MEMORY error will be reported.

As an example of the X instruction suppose that we are
DRAWIng a square and want to place a symbol at each corner.

Placing the DRAW instructions for the symbol In a string,
say S$, you can use the following DRAW string:

"R SIDE:X S%:0 SIDE:X S$:L SIDE:X S$:D SIDE:X S%:°

5: 30

VICKIT II user's manual

Now by just altering 5§ you can alter the symbol DRAWn at
each corner.

After an X Iinstruction DRAW does NOT return to the last
plotting poslition before the X instruction. Thus subroutine
strings should usually return to thelr starting position.

The current Colour, Turn and Scale values are carriled
through to the subroutine string and any changes made to
Colour, Turn or Scale within a subroutinpe string are
carried back to the string in which the X instruction
occurred,

The Colour instruction allows you to select the colour of
any lines DRAWn from then on untll either another Colour
instruction or the end of this DRAW statement. The form of
the Colour instruction is:

Cc:

where ¢ is either S (SET), R (RESET) or I (INVERT).

The Turn instruction allows you to rotate any further Up,
Down, Left or Right 1lnstructions through any multlple of 90
degrees, The Turn Instruction takes the form:

Tt 3

where t is elther a constant, e.g. 8, 1, 2 or 3, or a
variable which should have a wvalue of 8, 1, 2 or 3. The
effect can best be seen with a simple program which draws a
rectangle and then rotates it through 98 degrees, then 188
degrees and flnally through 278 degrees:

10 GRAPHICS

280 CLEAR 7

390 RECTS="R 48:U 18:L 48:D 18:"
40 DRAW “"BM(B8,88):"

58 FOR F=g TO 3

608 DRAW "T F:X RECTS:*®

78 NEXT F

88 GET AS:IF AS="" THEN 88

G0 TEXT LOWER

148 END

Turns are not additive so that:
"T 1:7 }):"™
{is NOT the same as:

“T 2:"

5:31

WARRING

FILL

VICKIT 11 usert's manual

The Scale instruction allows you to scale all subsequent
Up, Down, Left and Right lines. Lines can be made larger or
smaller by a factor of 1 (l.e. full size), 2, 4 or 8. The
form of the Scale instructlion is:

SSs:

where s is either a constant with a value in the range 9 to
7, or a variable with a similar value. The values have the
following scaling effects:

full size

half full size
quarter full size
eighth full size

full size

twice full size

four times full size
eight times full size

=3 O\ LY I WA = N

You can see the effect of the Scale instruction by changing
line 66 in the example Turn program to:

60 DRAW "T F:S F:X RECTS:"

Not only do the rectangles rotate but they also get
smaller Inserting a lline 55:

55 G=F+2
and changing line 60 to:
68 DRAW ™"T F:S G:X RECTS:"®

gives rotating rectangles which get larger rather than
smaller.

When a length is to be scaled with a scale factor of 1, 2 or 3 it
must be in the range 8 to 255 BEFORE the scaling is performed, If
scaling with a scale factor of 5, 6 or 7 the scaled 1length must
not be more than 255, |

The FILL instruction allows you to select an area on the screen
which Is RESET and surrounded by SET lines, e.g. a shape produced
by DRAW, or an area on the screen which is SET and surrounded by
a RESET area or RESET lines and FILL that area with SET or RESET
points respectively. If the shape is a rectangle then you can do
exactly the same thing using LINE with the F(ILL) option but
using the FILL instruction the shape need not be rectangular and
yvou need not know the size of the area to be FILLed before
starting.

"

32

VICKIT Il user's manual

The FILL algorithm, the process that VICKIT 111 goes througbh

FILL an area, is not very sophisticated so there are areas w!
which it will not cope. Shapes wlth Internal angles 1less th
181 degrees will usually be FILLed correctly, although as t
angles get smaller and smaller FILL may experience problem
However any shape can be split up into smaller shapes which wi
be FILLed successfully,

The form of the FILL statement is:
FILL (x,Y).colour

where the point (x,y) is the polnt at which FILL will start
work and colour s either S({ET) or R{ESET). Colour gives tl
colour of the the boundary which stops FILL.

Some examples of the use of the FILL {nstruction are as follows:

19 GRAPHICS:CLEAR 7

28 DRAW "BM(5,5):R15:U5:L5:U5:L5:D5:L5:D5:"
36 EILL (12,12),5

49 GET AS:IF AS="" THEN 498

5¢ FILL (12,8),R

68 GET AS:IF A$="" THEN 68

78 TEXT LOWER

88 END

This program will DRAW a shape on the screen at the bottonm lef
hand corner, then FILL it and wait for a key to be pressed. I
will then FILL the shape again, but this time RESET the area, I
no colour is specified FILL uses SET and 1f vyou attempt to FIL
an area which is not bounded by the <c¢olour specified FILL stop
at the edges of the screen.

It 1s a good idea to experiment with FILL and see what shapes |
will or will not FILL correctly. Often you will find that givin
a different starting point for the FILL statement will make th
statement succeed where it fajled before,

The effect of Internal angles approaching 8 can be seen with th:
following short program:

18 GRAPHICS

28 CLEAR 7

30 DRAW "BM(P,8):R100:U)l08:L100,D100:"
48 FILL (58,18)

50 GET AS:IF AS$="" THEN 59

68 TEXT LOWER

78 END

which DRAWS a triangle and almost FILLs {t.

5233

PUT

VICKIY? It user!s manual

The PUT Instruction can be descrlibed simply but c¢an be wused in
ways which are not at all obvious from Its description. As with
DRAW the effort required to use PUT to Its full extent will be
amply rewarded.

The PUT instruction just moves areas of high resolution graphlics
information between the screen and BASIC arrays (if you have not
done much work with arrays now is the time to start). On the
screen these areas form images, in an array they form numbers
which can be manipulated with normal BASIC commands (you can even
talk about operations such as 'adding 1 to a shape') although you
will wsually use PUT again to de any manipulation., The PUT
statement has the following form:

PUT arrayelement direction (x1,yl)-(x2,y2),rule
where arrayelement Is the name of any array element, e.qg.

SCs(1,1)
or PT(16,10,10)
or CHAR% (9, 1)

Arrayelement MUST be a number, real or integer (as you will see
integer arrays are easier to handle). It need not have been
defined in a DIM statement if you are sure that there 1s enough
space in the default dimensioned size of an array {1) elements
for every dimension) to hold the information you are going to put
in it.

Direction 1s elther > or <. > signifies that the contents of the
array are to be placed on the screen and ¢ that the rcontents of
the screen are to be placed in the array (the author apologises
for the horrendous syntax),

(x1,y1)~-(x2,y2) gives the coordinates of two diagonally opposite
corners of a rectanqgular area on the screen. This is the area
that will be transferred to the array (using <} or filled with
the array (using >).

Rule i{s a number in the range # to 15 which tells VICKIT II how
to combine what is on the screen with what it s in the array.
The result of this calculation is then placed on the screen or in
the array. Fo: simple applications this is omitted in which case
it is taken as 3 {f moving to the screen, 5 1f moving to the
array. A table at the end of this section detalils the 16 possible
rules but useful rule numbers will be pointed out as the details
of PUT are filled in,

While experimenting with PUT omit ,rule for the moment. The most
useful rule for the PUT statement you have written will be
selected automatically.

The simplest use of PUT 1s to move a shape around the screen. The
Idea i{s to use the other facilities of VICKIT II to produce a

5134

VICKIT 11 user's manual

shape on the screen, use PUT to place {t In &a BASIC array an
then to use PUT again to return it to the screen but In .
different location, For example:

18 GRAPHICS:CLEAR 7

28 DRAW "BM(8,8):R15:U5:L5:US:L5:D5:L5:D5:°"
380 PUT SHAPE(B) < (©8,90)-(15,18)

40 PUT SHAPE(8) > (1¢8,168)-{115,110)

56 GET AS$:1IF AS="" THEN 58

68 TEXT LOWER

780 END

DRAWs a shape on the screen, reads that shape into the array
SHAPE then places It back on the screen In a different location,

Array sizes

When using PUT you need to calculate the size of the area on the
screen you are interested in to be sure that the array you are
using 1s large enough. No harm will occur if the array 15 too
small (except that PUT will not work correctly) or {f it 1Is too
large ({except that you will be wasting memory). Multiply the
dimensions of the rectangular area you are interested in
(16*11=176 in the above example), divide by 48 for a real array,
16 for an integer and round the result UP to the nearest integer
(1f need be). The result is the minimum number of elements that
the array must have for PUT to work correctly. For the above
example divide 176 by 48 to get 4.4 and round up to 5 so that DIM
SHAPE(4) (remember arrays have zero'th elements) would have
provided a large enough array. Had the array been integer you
would have divided 176 by 16 to get exactly ll. Thus DIN
SHAPE%(18) would provide enough space.

Reflections

Having described how to use PUT in its simplest form it is tlme
to look at some of its more powerful features. In the description
of PUT it was stated that ' (x1,yl)-(x2,y2) glves the coordinates
of two diagonally opposite corners of a rectangular area on the
screen', PUT does not require that you use the same palr of
corners for PUTting teo the screen as for PUTting to the array. In
fact, by altering the relationship of the two corners you can
reflect a high resolution graphics shape. To see thils add line 42
to the example above:

42 PUT SHAPE(8) > (1€8,108)-(115,98)

which produces the shape reflected about a horizontal 1line. To
reflect about a vertical line add:

44 PUT SHAPE(g) > (le8,198)-(85,118)

and to reflect about a horizontal and then a vertical line add:

46 PUT SHAPE({®) > (leg¢,lee)-~(85,90)

5:35

VICKIT II user's manual

By specifylng a large enough array (DIM SCREEN(784) or DIM
SCREENY(1768)) you can even read the entire screen into a BASIC
array and then reflect it to produce kaleidoscope patterns.

You should also notice that since you specify the array element
for PUT to start with there is no requirement that it be the
zero'th element all the time and you need not specify the same
shape or size of area on the screen for replacing as you did when
saving. To get the most out of PUT you should read the section in
Information for machine code programmers about {t.

Collisions

Immedlately after a PUT statement and before any other VICKIT Il
statements have been executed PEEK(175) AND 1 1is zero {f there
were no points ' 't in the screen area examined or 1 If there were
any points set. In addition PEEK(175) AND 2 is zero if there were
any points set In the array area examined or 2 if there were any
points set. This ‘'collision detection' facility allows youv to
discover easily if placing a shape on the screen will overwrite a
shape already there,

Rules

As mentioned earller PUT allows you ¢to specify a rule for
combining what is in the array with what is on the screen at the
corresponding point, The result is then placed in the array or on
the screen depending on the ‘direction® of the PUT. Rules are
numbers from @6 to 15 and, together with their results, are
described below. The result of any rule is given as @ or 1 and
depends on the value of the screen point S (8 for a RESET point,
1 for a SET point) and the corresponding array point A. A zero
result produces a RESET polint 1f placed on the screen while a
non-zero {l.e. 1) result produces a SET point,

Rule number Result
& Always @
1 A and 5 (1 Iif A=1 and S5=1)
2 A and (not 8) (1 if A=1 and S=8)
3 A (1 if A=1)
4 (not A) and S (1 1f A=@ and 5=1)
5 S (1 if S=1)
6 A xor S (1 if A=) and S=8 or if A=@ and 8§=1)
7 A or S {1 If A=) or 1f S=1 or 1f both=1l)
8 not (A or S) (1 if A=¢ and 5=8)
9 A equiv § (1 if A=S)
16 not S (1 if S=0)
11 A or {(not S) (1 If A=1 or if S=8)
12 not A (1 1f A=8)
13 {not A) or 8§ (1 if A=P or 5=1)
l4 not (A and S) {1 if A=0 or S5=0 or both=8)
15 Always 1
5:36

VICKIT 11 user's manual

Some of these rules seem useless while others simply provide
alternative ways of doing things, e.g. wusing rule 15 with
direction > glives another way of filling a rectangle besides
those offered by LINE and FILL, Some can. be used in 'tricky!'
ways, e.g. using rule 3 with direction <« seems to accomplish
nothing at all but does allow you to detect the existence of any
non-zero array elements using collision detection. The section of
this manual on Hints, tips and tricks contalns a number of these
unusual ways to use PUT and you wlll probably discover new ones
for yourself.

CIRCLE

Although the CIRCLE instruction {s detected by VICKIT Il there |s
simply not enough room on the VICKIT 1II chip to hold the
programming needed for it. To provide CIRCLE therefore a separate
program has been written to load the programming needed {into the
programmable memory of the VIC. This will be available separately
and you should enter this program Inte your VIC and save lt,
using the APPEND technique given earlier to add it to your own
programs. An attempt to use CIRCLE without thls program will
probably result in a 7ILLEGAL QUANTITY error,

The CIRCLE statement produces not only circles but ellipses and
arcs. The form of the statement 1is:

CIRCLE {x,y),radlus,colour,ratlo,start,finish

vhere (x,y) is the centre point,
radius Is the radius of the circle,
colour is the colour (S(ET), R(ESET) or I{(NVERT)),
ratio is the height/width ratio,
start gives the start point of the clircle,
and finish glves the end point of the circle.

The defaults for colour, ratio, start and f£inish (the values used
ff they are not given explicitly) are S(ET), 1, 8 and 1.

The height/width ratio is the value of the height of the flgure
to be drawn divided by 1its width. For a «clrcle of course this
value should be 1, for an ellipse which iIs taller than it |t is
wide it will be greater than 1 while for an ellipse which is
wider than it is tall it will be less than 1.

The start ‘round' the circle that the start polint and
be, VICKIT 1II will start to draw the circle at 3 o'clock and draw
clockwlise. Thus .25 of the way round the circle is at 6 o'clock,
.5 at 9 o'clock, .75 at 12 o'clock and so on. Giving wvalues for

start and finish allows you to produce arcs of elther clrcles or
ellipses,

If you glve any of the four optional values ({colour, ratio,
start, finish) a wvalue, you must give all of the preceding
optional values a value, e.qg.:

5:37

VICKIT I1 user's manual

CIRCLE (1¢6,100),50
CIRCLE (le06,180),106,5,1,8,.75
CIRCLE (50,50),286,,,,.25

and so on. If you want to use the default for any optional value
simply omit the value but leave the correct number of c¢ommas {n
the statement.

VICKIT 11 user's manuval

Error handling by VICKIT 11

When enabled VICKIT II handles errors in a somewhat different way to that
taken by a normal VIC. Since the error may have happened while the VIC was
in high resolution graphics mode VICKIT II first of all intercepts the
error before the VIC handles it, saves the error message and restores the
screen to normal text mode {In effect it executes a TEXT UPPER statement).
The error message Is then restored and the VICKIT Il routine for setting
up HELP {nformation is executed., This stores the information that might be
needed later if you enter the VICKIT II command:

HELP
VICKIT II then rejolns the normal VIC error handling routine,

A side effect of the TEXT UPPER routine 1Is that the screen 1s cleared
since otherwise the screen would become full of garbage. While the VIC is
working with high resolution graphlies this 1s reasonable but you will
probably have noticed that getting an error while entering a program or a
command results in the screen being cleared unnecessarily., If vyou are
prepared to put up with this you can ignore the rest of this section, but
if you £find it annoylng read on.

To alter the error handling by VICKIT 11 so that the screen is not cleared
oh an error you should follow these steps once VICKIT II has been enabled:

1 Check that location 768 contalns 49. You can do this with
the command PRINT PEEK(768). If locatlon 768 does not
contain 49 then elther you have already altered the error
routine with these steps {in which case you should get 56),
you have not Initialised VICKIT II (In which <case you
should get 58) or you have some other system enabled which
also Intercepts the error.

2 If location 768 does contain 49 then replace it wlth 56,
using the command POKE 768,56.

3 To reverse the process, that is to let VICKIT II <c¢lear the
screen on an error simply follow steps 1 and 2 again but
look for 56 in step 1, and replace it with 49 in step 2.

You can perform these steps In your program if you wish with sections of
programming such as:

1268 REM REMOVE TEXT UPPER ON ERROR
1819 IF PEEK(768)=49 THEN POKE 768,56:RETURN
1928 PRINT "ERROR LINK NOT CORRECT"® :STOP

2000 REM RESTORE TEXT UPPER ON ERROR
2018 IF PEEK(768)=56 THEN POKE 768,49:RETURN
2820 PRINT "ERROR LINK NOT CORRECT":STOP

6:39

VICKIT Il user's manual

Examples of programming with VICKIT II

The samples of programming that have been shown so far have been fairly
simple ones, designed to i1llustrate a certain point. The programs 1in this
section are designed to give you a feel for the sort of things that you
can do with VICKIT 1I's high resolution graphic 1instructions. Taken
together with the next section (Hints, tips and tricks) this should give
you a number of technigues you will be able to apply to your own programs.

All the programs listed here will start with:
1¢ GRAPHICS:CLEAR 7
and end with:

1666 GET AS:IF AS="" THEN 1000
1818 TEXT LOWER
1820 END

and so these 4 lines will not be included in the listings.
Program 1

2¢ REM RANDOM INVERTED SQUARES

38 FOR X=8 TO 175 STEP S

46 LINE (X,8)-(X,159)

58 NEXT X

60 FOR I=1 TO 108

78 LINE (INT(RND(TI)*176),INT(RND(TI)*168))-
(INT(RND(TI}*176), INT(RND(TI)*160)),I,F

88 NEXT I

You will be able to get line 78 all on one line.
Program 2

2¢ REM RANDOM BOXES

30 FOR I=1 TO l@0

40 LINE (INT(RND(TI)*176),INT(RND{TI)*168))-
(INT(RND{TI)*176),INT{(RND(TI)*168)),5,B

56 NEXT 1

Program 3

28 REM RANDOM STICKS

39 FOR I=1 TO 108

48 LINE (INT{RND{TI)*176),INT(RND(TI)*168))-
(INT(RND I)*176),INT(RND{TI)*168)),S

50 NEXT I

'rogram 4
20 REM SIN AND COS CURVES

38 FOR X=8 TO 175
48 SET (X,B8B+SIN(X/16)*88):SET (X,80+C0S(X/16)*88)

T: 48

VICKIT II user's manual

58 NEXT X
‘rogram 5

20 REM OFFSET REPEATED, FILLED-IN BLOCKS

38 DRAW "BM(8,8):R15:U5:L5:U5:L5:D5:L5:D5:"
48 FILL (7,7)

58 PUT SQ(e,8)<(2,8)-(15,18)

68 FOR X=8 TO 168 STEP 17

78 FOR ¥Y=8 TO 152 STEP 12

80 PUT SQ(9,0)>(X,Y)~-(X+15,¥Y+18)
g NEXT Y
188 NEXT X

rogram 6

28 REM MIXING TEXT AND GRAPHICS SEE NEXT SECTION FOR DETAILS
39 DIM CHARS%{3,26)

40 FOR I=8 TO 26

58 FOR J=0 TO 7

60 POKE 40896+J,PEEK(32768+8*]I+4J)
18 NEXT J

8o PUT CHARSY (8,1)<{0,152)~(7,159)
90 NEXT 1

108 REM HAVING READ IN CHARACTERS WRITE A MESSAGE

112 LINE (88,0)-(88,59)

125 LIHE ”(175;59)

138 K=86:LET TEXTS$="MIRROR"

140 FOR I=1 TO LEN(TEXTS)

150 PUT CHARS% (B,ASC{MIDS {TEXTS,1,1))-64) > (K,8)-(K-7,7)
168 K=K-8

1786 NEXT I

188 K=98

198 FOR I=1 TO LEN({TEXTS)

208 PUT CHARSR(8,ASC{(MIDS(TEXTS,I1,1))-64) > (K,8)-(K+7,7)
210 K=K+8

220 NEXT 1

238 K=108

248 FOR I=1 TO LEN({TEXTS)

258 PUT CHARSY(8,ASC{MIDS$ (TEXTS$,1,1))-64) > (K,61)-(K+7,68)
268 K=K+8

278 NEXT I

280 K=100

288 FOR I=1 TO LEN{TEXTS)

389 PUT CHARSR (0,ASC(MIDS(TEXTS,I,1))-64) > (K,57)-(K+7,508)
318 K=K+8

3290 NEXT I

330 DRAW "BM{50,119):"

349 FOR I=8 TO 75 STEP 6.2

358 IF I=80 THEN: LINE - (58+SIN(I*4{8)*50,110+COS5(I*48)*58),R
368 LINE - (58+5IN(I1*49)*59,112+CO5(I%48)*50)

378 NEXT I

e that variables whose names clash with VICKIT II statement words, e.q.
T$ in line 138 can be used providing LET is used. TEXTS in the middle

7341

VICKIT II user's manual

of a statement causes no problem. This feature may be removed {n future
versions of VICKIT high resolutlon graphlcs chlps so it should be avoided
if at all possible.

Also note in line 342 the need for the extra colon after THEN.

By adding ,12 to the PUT statements In lines 158, 288, 258 and 3p8 the
writing will be displayed in reverse field.

Program 7

286 REM TRY TO WORK OUT WHAT THIS DOES BEFORE READING THE NOTES
38 FOR I=1 TO 168

48 LINE -(176*RND(TI),168%*RND{TI)),S,B

58 NEXT I

68 DIM SCREEN(783)

780 PUT SCREEN(8) > (2,8)-(175,159),6

8¢ PUT SCREEN(P) < (6,0)~-{175,159),6

9@ PUT SCREEN(@) > (8,8)~-(175,159),6

188 GET AS$:IF A$=*"" THEN 80

You will have to press a key twlice to halt this program. The program
depends on a property of the xor function (hence the ,6 on each PUT
statement}). If you have an image stored in an array, and an image area of
the same dimensions on the screen, then PUTting the array to the screen
with rule 6, then PUTting the new screen to the array aqgain with rule 6
and £inally PUTting the new array to the screen with rule 6 results In
what was originally on the screen being stored in the array and what was
originally in the array belng stored on the screen. More Iimportantly we
have swapped a screen and an array image without using a second array the
same sSize as SCREEN.

Ts42

Hints, tips and tricks

This section is devoted to describlng features of VICKIT II commands and
statfments not immediately obvious from thelr descriptions. Often these
were not designed into VICKIT II but arise from looking at the statements
{n“tinusual ways. For example when the LINE statement has the FILL option
VICKIT @1 takes the two polnts gliven and swaps the coordinates around ({f
need be) so0 as always to draw left to right and bottom to top. While PUT
could also do this you get far more power by 1leaving the coordinates as
they are given since PUT then provides a way to do reflections,

AUTO

When AUTO {s working it prints a line number and what looks like
a space. It is in fact a shift/space which means that you can
Inelude spaces before the BASIC statement you are about to type
and they will be kept in your program. You will have noticed that
all the statements inside FOR...NEXT loops in the sample programs
have been indented since this helps to show up the structure of
the program.

One point to watch is that if you screen edit a line which has
been indented by this method you will have to re-insert the
shift/space in order to keep the indentation.

STEP and

TRACE
STEP and TRACE are totally i{ncompatible with VICKIT II high
resolution statements, |

Screen size

You will have noticed by now that an area at the bottom of the
screen s never used to plot high resclution graphics. The
purpose of this area is to allow short messages to be displayed
on the screen without disrupting what s on the screen. If you
want to use this faclility the following short BASIC subroutine
will display a two letter message at the bottom left hand corner
of the screen:

5888 REM MESSAGE ASSUMED TO BE IR CH$ (LENGTH 2)
5818 FOR I=1 TO 2

5020 CH=ASC (MIDS(CHS,I,1)):IF CH>=64 THEN CH=CH-64
58360 FOR J=8 TO 7

5949 POKE 76164+J+(1I~1)*8,PEEK(32768+CH*8B+J)
5859 NEXT J
5668 NEXT 1

5878 RETURN

Should you want to remove the Inaccessible area {include the
following statement in your program after each CLEAR statement!

POKE 36867,PEEK(36867) AND 253

8:43

Most

of

VICKIT 11 user's manual

the s8imple VICKIT II statements, GRAPHICS, CLEAR, TEXT, SET,

RESET, INVERT and POINT have no hidden depths which can generate suprises
although you can use the TEXT instruction even {f you are already using
the VIC for text. In this case you clear the screen and set the character
generator to produce UPPER or LOWER case as specified in the TEXT
statement which can be easier to understand than the corresponding:

or

LINE

DRAW

PRINT *([cls])™;CHRS (14)
PRINT "[cls)";CHRS (142)

LINE can be used in a number of ways which may not be immediately

obvious from the description. For example, to produce random
l1ines across the screen you would use:

28 FOR I=1 TO 189
30 LINE (176*RND{(TI),l168*RND(TI))~(176*RND(TI),168*RND(TI})
480 NEXT 1

which produces unconnected LINEs. To produce a random set of

LINEs on the screen which are joined to each other replace line
3g with:

30 LINE —~(176*RND(TI),168*RND(TI))

I1f you want to produce thick-walled boxes using LINE the easiest
way is to first produce the outside wall wusing LINE with colour
SET and option FILL, then produce the hole in the middle o¢f the
area using LINE with colour RESET and option FILL, e.qg.:

28 LINE (8,8)-(1006,180),SET,FILL
30 LINE (18,16)-(99,98),RESET,FILL

By using an array CHARS defined as CHARS$(25) you can use DRAW to
give yet another way of writing characters on the screen. For
example, 1f CHARS$(8) was defined by:

CHARS (@)="R4,U9:R4,D9:BL2,U4:L4:BR7,D4: "

then DRAWing CHARS(P) writes an upper case A on the screen at the
current DRAWing position and leaves the DRAWiIng position ready
for another character. Since you use DRAW rather than PUT the
Scale and Turn instructions can be {incorporated to produce
variations on the characters.

A point about writing which holds for PUT as well is that {f you
use the CI: instruction in DRAW, or the ,6 rule for PUT, then
DRAWing or PUTting in the same location twice effectively erases
what was DRAWNn or PUT and restores what was originally on the
screen. Thus Instructions can be placed on the screen and removed
when the user has taken notice of them 1leaving the high
resoclution screen unchanged.

8:44

VICKIT 11 user's manual

PUT

Many of the tricks possible with PUT have been described already
but there are still one or two intriguing possibilities left. For
example you can define readable characters which flt in an area
on the screen 4 polnts wide by B8 high., If the characters are
placed In an array as with example 6 in Examples of programming
with VICKIT I then PUT can be used to produce a 44 column VIC
simulation,

Defining vyour own speciallised characters (mathematical, APL,
Greek, Russian etc) Is yet another possibillity that PUT allows,
Possibly the best {dea would be to write a character font
generation program in BASIC which would allow you to define and
edit easily a given character set, placing them In an array which
could then be saved to tape or disk, By using a common type of
array between programs you could write programs which could run
with alternative character sets.

Besides defining smaller characters it is of course egually easy
to define larger ones. Wlth more space avallable much finer
detail can be incorporated into a character, so that it should be
possible to produce specific type faces on the VIC for animated
noticeboards and the such like.

GENERAL HINTS ON GRAPHICS PROGRAMS

Always make sure that the user of the program knows what 1{is going on. A
number of ways have been described for getting characters and messages on
the screen at the same time as graphics so use them.

Using sound as well can be a greater enhancer of programs., Simply giving a
'beép' to draw the user's attention to the screen can save a lot of time
and trouble.

Always try and make something happen on the screen, even if it is only a
flashing cursor:

6808 REM HIGH RESOLUTION FLASHING CURSOR AT POINT (X,Y)
6618 PUT CURSR(8) < (#,90)-(7,7),15

6828 FOR N=1 TO 108

6@30 PUT CURSR(8) > (X,Y)-(X+7,Y+7),6

6640 FOR DELAY=1 TO 2088;:NEXT DELAY

6850 PUT CURSR({E) > (X,Y)-(X+7,Y¥+7),6

6860 FOR DELAY=1 TO 208:NEXT DELAY

6078 NEXT N

686880 RETURN

although some sort of small but intricate drawing {s even better, Thils is
particularly useful if you are dolng some set up routine which may take a
long time, for example reading in an entire character set to an array for
PUT or DRAW.

8:45

VICKIT 11 user's manual

Multicolour mode

When using the CLEAR statement the number following CLEAR {s usuvally in
the range 1 to 8 for normal high resolution graphics, but a number in the
range 9 to 16 selects a mode of graphlcs called the multicolour mode. In
this mode you can produce graphics in 4 different colours althouygh the
resolution of the screen drops from 176 by 168 to 88 by 168.

In the high resolution mode there 1is one bit in the VIC's memory which
corresponds to each polnt on the screen and each polint is one dot wide.
When vyou use the SET instruction you are SETting this bit and hence
producing a2 dot on the screen, In the multicolour mode however there are
two bits corresponding to each point on the screen and each point 1is two
dots wide (hence the resolutlion is 88 by l168). While one bDit in the high
resolution mode can only be @ or 1 (SET or RESET) two bits in the
multicolour mode can be @ and @8, @ and 1, 1 and 8 or 1 and 1 and
depending on the value of these two bits one of four colours s selected
for the display of the corresponding dot.

The meanings of the four patterns are as follows:

g and @ display the point in the screen colour

g and 1 display the point in the border colour

1l and 0 display the point in the foreground colour
1 and 1 display the point in the auxiliary colour

where the screen and border colours are set up as described on page 134 of
PERSONAL COMPUTING ON THE VIC-28, the foreground colour is the colour you
specified in the CLEAR statement (the number used in the CLEAR statement
is the number for the colour vyou require plus 8, e.g. 1+8=9 for BLACK
foreground in the multicolour mode) and finally the auxiliary colour is
one. of the sixteen colours available for the screen colour produced with
the following command or statement:

POKE 36878, (PEEK(36878) AND 15) OR (C*1l6)

where C is the number for the colour that you want, @ for BLACK, 1 for
WHITE and so on to 15 for LIGHT YELLOW.

You can now use the SET and RESET statements to produce dots of any of the
four colours selected on the screen. To produce a dot of the screen colour
at (x,y) (note that x must be in the range 8 to 87) you must RESET (turn
to 8) the two points controlling the colour of that point using:

RESET (2*x,y) :RESET {(2*x+1,Yy)
For a point of the border colour use:
RESET (2*x,vy):SET (2%*x+1,Y)
For a point of the foreground colour use:

8:46

VICKIT Il user's manvuval

SET (2*x,y) tRESET (2#%*x+1,vy)
while for a dot in the auxiliary colour use:
SET (2*x,y):SET (2*x+1,vy)

You will be able to use LINE, DRAW, FILL and PUT as notrmal but the colour
results may not be what you expect, For example, horizontal SET LINEs
which start at an even x value and finish at an odd one will produce lines
in the auxiliary colour but vertical SET LINEs will elither come out in the
foreground colour or the frame colour depending on whether the x
coordinate of the line is even or odd,

As an example of the multicolour mode here is a program showing 1lines in
three dlfferent colours:

16 REM TRICOLOUR BY E., HULME

28. GRAPHICS

39 CLEAR 11 -

49 POKE 36879,94:POKE 36878, (PEEK(36878) AND 15) OR (7*16)
59 X=BB:REM LINE 48 SELECTS SCREEN, FRAME AND AUXILIARY COLOURS
66 FOR ¥Y=p TO 760

70 SET (X,Y):REM FOREGROUND COLOUR

88 NEXT Y

98 FOR I=8 TO 68

180 X=2*%1+1:SE? (X,I):REM BORDER COLOUR

118 NEXT 1

128 FOR I=0 TO 78

130 X=2168-I%2:X1=X+1

148 SET (X,I):SET (X1,I):REM AUXILIARY COLOUR

1560 NEXT 1

16¢ GET AS$:IF AS="" THEN 168

178 TEXT LOWER

186 END

8:47

LA

VICKIT 1I user's manual

Conversion from or to other graphics systems

Four alternative graphlcs systems will be considered here, those provided
by the IBM Personal Computer (tm), the Tandy Color Computer (tm), the BBC
Microcomputer and, perhaps most interestingly, the Turtle Graphics
approach.

On the whole VICKIT II statements are compatible with those on the IBM and
Tandy machines and where possible steps have been taken to make the
compatibllity greater. The most common difference is in the names of the
statements {e.g. VICKIT II uses FILL where both IBM and Tandy use PAINT)
but the syntax of statements s often different due to the reduced
resolution and colour alternatives available on the Commodore VIC.

Screen size, layout and resolution

Whereas the VIC with VICKIT II handles only one high resclution mode (176
by 168) the IBM, Tandy and BBC machines can work in wvarious resolutions:
6406 by 20806 down to 16¢ by 100 for IBM, 256 by 192 down to 128 by 96 for
the Tandy and 648 by 256 down to 168 by 256 for the BBC, Thus the IBM
machine has a statement SCREEN to select which mode to work with
{including a mode for text), the Tandy PMODE and the BBC simply MODE. Once
the mode is selected IBM use CLS to clear the screen, Tandy use PCLS and
the BBC CLG (CLS for the text screen). The nearest equivalent to these
statements with VICKIT II is the CLEAR statement, which also incorporates
the information about colour supplied by IBM and Tandy .with the COLOR
statement and by the BBC with the GCOL statement. VICKIT 1II uses TEXT to

return to graphic¢s mode which has no direct equivalent in any of the other
machines.

A more awkward problem 1s that of the screen resolution and arrangement,
Tandy place the origin of the graphics screen (@,28) at the top 1left hand
corner of the screen and it appears that IBM may have followed a similar
apprcach. Together with the different resolutions there may be some
problems In transferring programs whi¢h make use of the highest resolution
and/or the position of the origin.

Instructions dealing with single points

SET and RESET instructions have direct equivalents (PSET and PRESET
respectively) in both IBM and Tandy machines. There dces not appear to be
any INVERT statement on either machine nor any way of giving LINE or DRAW
the colour INVERT. PSET and PRESET set the current drawing position
whereas with VICKIT II you must DRAW a blank move to do this. The BBC

machine uses PLOT n,x,y where n is 69 for SET, 71 for RESET and 78 for a
form of INVERT.

The POINT instruction on VICKIT II has no direct equivalent on any of the

other three machines since they use POINT as a function which can be

inserted in any expression as a normal BASIC function. Thus the IBM, Tandy
and BBC line:

18 IF POINT({X,Y)<>B THEN 180

must be replaced by:

9:48

VICKIT II user's manual

18 POINT(X,Y),TtIF T<>@ THEN 188

i th VICKIT II.

vhdvanced VICKIT Il statexments

LINE

The LINE statement s practically 1{dentical on the 1IBM, Tandy and
commodore machines, the only differences belng due to syntax. With Tandy
the colour can only be SET or PRESET and option is elther B or BF (BOX and
30X FILL). Although no infermation was avallable at the time of printing
abocut the IBM LINE syntax it offers the same facllitles and is written by
Microsoft who also wrote the Tandy system so it should be similar. The BBC
nachine appears not to have any bulilt in Instruction for drawing boxes or
filled—-in boxes but PLOT has a value for n gliving filled-in trliangles.

DRAW

DRAW is fairly similar on the IBM, Tandy and Commodore machines with some
ninor additlions to the VICKIT II version. Both the IBM and Tandy machines
seem to be limited to horlizontal, vertical or dlagonal 1lines (they wuse E,
F, G and H for dlagonal 1lines) whereas VICKIT 1II allows arbitrary lines
using the , separator. VICKIT II DRAW allows both : and ; as separators
between DRAW fnstructions, : since it is closer to BASIC and ; to lncrease
compatibility with other machines. VICKIT II also Insists that EVERY DRAW
Instruction s terminated with elither 1 or ; whereas both the other
machlines relax this requirement.

The M instruction on the Tandy allows the B and N options as on VICKIT II
but uses + and - signs to signify a relative move whereas VICKIT II uses
parentheses to signify an absclute point in every command that requires
one., The IBM move uses a separate Instruction (B or N) to produce the
effect of BM or NM on either the Tandy or VICKIT 1I. Whether or not the B
or N options can stil]l be used with L, R, U or D is not obvious.

The C instructlion 18 much the same on all three machines although of
course both the IBM and Tandy offer a 1larger selection of possibilities
{although not, it seems, INVERT).

The T instruction Is renamed A (for Angle} on both the IBM and Tandy
machines but otherwlse works in a similar fashion.

The Scale instruction on the Tandy (and presumably the IBM) has a much
larger range of values (from 1/4 to 62/4 on the Tandy). Both Turn and
Scale can take their values directly from varlables whereas the IBM
machine at least requires an equals sign between T (or S) and the variable

nane .,

The X Instruction appears to work identically on all three machines.

DRAW on the BBC machine Is used to draw lines from the current drawing
position to an absolute point. MOVE is used to produce a blank DRAW.

9:49

VICKIT II user's manual

FILL

The VICKIT I FILL statement has an almost identical form to that wused by
both IBM and Tandy although they both use the word PAINT (which seems to
be easily confused with POINT). The PAINT statements can also speclify a
larger range of boundary colours at which to stop. The only equivalent on
the BBC machine appears to be a value for n with PLOT which gives filled-
in triangles.

PUT

There are a a large number of differences between the 1IBM, Tandy and
Commodore machines with the PUT statement. Both IBM and Tandy use PUT to
place information on the screen and GET to place it In an array whereas
VICKIT II uses just the one word PUT and the > and < direction characters,
The rectangular area concerned i{s specified in the same way on all three
machines but it is not clear whether elther the IBM or Tandy allows the
reflection of images in the way that VICKIT II does. The rule for
combining screen and array images is limited to PSET, PRESET, AND, OR and
NOT on the Tandy machine (rule numbers 3, 12, 1, 7 and 18) and PSET,
PRESET, AND, OR and XOR on the IBM (rule numbers 3, 12, 1, 7 and 6§6). In
addition the rule number {s not specified when transferring information to
the array, only when transferring to the screen.

The BBC machine appears to have no equivalent to PUT and GET although the
GCOL statement allows AND, OR, XOR and INVERT colour operations, somewhat
like the ,rule option for PUT in VICKIT II.

CIRCLE

There seem to be no obvious differences between the machines with CIRCLE
although the IBM machine does have an apparently undocumented feature
whi¢h allows the connection of arc end points to the centre and appears to
specify the start and finish points with respect to angles expressed in
radians. Thus default values for start and finish points would be 8 and
2*pl (2*pl radlans=360 deqrees).

Turtle Graphics

Turtle graphics is an approach to teaching, rather than to graphics, which
uses the ldea of a turtle moving on a screen and (usually} leaving a trace
behind it. Using simple ideas such as FORWARD, LEFT, BACKWARD, RIGHT, PEN
UP and PEN DOWN the turtle can not only produce a large variety of
patterns and shapes on the screen but c¢an lead the inquisitive user to
branches of mathematics and even physics which seem to have little
connection with the original idea of the turtle.

The best book avallable to describe turtle graphics is Turtle Geometry, by
Barold Abelson and Andrea diSessa, published by the MIT Press, Besides
giving a large number of procedures for drawing shapes and pattérns on the
screen of a computer this book can lead to such things as General
Relativity, curved space-time and spherical geometry.

9:58

VICKIT 11 user's manual

As an appendix to the book the authors provide ({information on how to
handle turtle graphics 1in languages such as BASIC and 1t is from that
appendix that the sample program below was developed, In it a baslc turtle
graphics 'shell' of subroutines is defined, and a simple procedure glven
to produce an interesting pattern. For & more useful Implementation of
turtle graphics one would probably want to create an interpreter of the
turtle graphics primitives but the shell approach will be initially
useful,

The turtle has no overall view of the world it inhablts since {t expresses
jts movements with reference to {ts current 1location and headling. Thus
typical turtle commands are:

FORWARD 180
RIGHT 25

and so on. FORWARD makes the turtle move in the direction it s currently
heading a certain distance while RIGHT makes the turtle turn clockwise a
certain number of degrees. To make things easy we also define BACK and
LEFT. PERN UP and PEN DOWN should be obvious.

The turtle shell defined here has an initialisation section and separate
subroutines for each turtle primitive. To write a procedure for the turtle
one therefore embeds a number of GOSUBs to the relevant routines within
the turtle shell., On RUNning the program the turtle goes through {ts
paces.

Turtle shell

180 GRAPHICS
116 GOSUB 10808806
128 REM HIGHEST LEVEL VARIABLES/ARGUMENTS SET UP HERE BEFORE 138

138 REM HIGHEST LEVEL PROCEDURES START AT 1360

258 GET AS:IF AS="" THEN 1340

268 GET AS:IF AS$="" THEN 268

278 IF AS="C"™ THEN 138

280 TEXT LOWER:STOP

288 REM ANY KEY HALTS TURTLE, C THEN CONTINUES

360 REM LOWER LEVEL PROCEDURES START HERE

1088 REM FORWARD ROUTINE (D=DISTANCE TO MOVE)

1818 DX=COS (FNR (HEADING))*D:DY=SIN (FNR(HEADING))*D
18028 MXS="RDX,":IF DX<@ THEN MXS$S="LDX,; " :DX=-DX
1830 MYS="UDY:":IF DY<8 THEN MYS="DDY:;":DY=-DY
1840 DRAW BLANKS+MXS+MYS

1858 RETURN

20880 REM BACK ROUTINE (D=DISTANCE TO MOVE)

2818 D==D:GDTO 1280

3024 REM RIGHT ROUTINE {(A=ANGLE TO TURN)

3810 HEADING=HEADING-A
3828 RETURN

§:51

VICKIT II usert's manual

i8¢
4818

REM LEFT ROUTINE (A=ANGLE TO TURN)
A==A:GOTO 30890

REM PEN UP ROUTINE
BLANKS="B"

RETURN

REM PEN DOWN ROUTINE
BLANKS=""

RETURN

5000
5010
5920
6880
6818
6028

10002 REM INITIALISE

16818 CLEAR 7:DRAW "Bm(88,80):"
168628 DEF FNR(D)=D*3,14156/18¢0
12838 RETURN

An example of the use of the turtle shell is taken from page 30 of Turtle
Geometry and is produced by ADDING the following lines to the shell:

10 REM SAMPLE OF TURTLE GRAPHICS ON THE VIC, IMPLEMENTING THE
28 REM POLYROLL PROCEDURE ON PAGE 30 OF 'TURTLE GEOMETRY' BY
38 REM ABELSON AND DISESSA. PROCEDURE IN TURTLE NOTATION IS:
48 REM

58 REM '*TO POLYROLL SIDE ANGLEl ANGLE2!

68 REM ! REPEAT FOREVER!?

78 REM °® POLYSTOP SIDE ANGLEl®

860 REM ° RIGHT ANGLE2!

938 REM

120 SIDE=40:A)l=68:A2=45

138 GOSUB 300

140 A=A2:GOSUBR 3800

158 REM

168 REM THIS IS EQUIVALENT TO ‘'POLYROLL 42 68 45°

178 REM

308 REM POLYSTOP

318 TURN=§

328 D=SIDE:GOSUB 1088

338 A=Al1:GOSUB 3908

348 TURN=TURN+Al

358 IF (TURN/368)<>INT{TURN/368) THEN 320

368 RETURN

376 REM

388 REM THE POLYSTOP PROCEDURE IN TURTLE PROCEDURE NOTATION IS:
398 REM

408 REM °'TO POLYSTOP SIDE ANGLE®

418 REM ? TURN « @°

420 REM ‘? REPEAT®

438 REM ! FORWARD SIDE!?

448 REM ! RIGHT ANGLE®

450 REM ! TURN & {TURN <4+ ANGLE)

466 REM ' UNTIL REMAINDER (TURN, 366) = p*

478 REM

9

52

Although a turtle should have a larger resolution display to wander about

VICKIT 11 user's manual

on than that provided by the VIC a suprisingly Jlarge number of the
subjects treated by Abelson and diSessa can

be simulated on the VIC. T«
really get a feel for the possibllities you need to read

the book but i
is to be hoped you now have some idea of the possibilities.

9:53

VICKIT Il user's manual

Information for machine code programmers

Thlis section {8 intended to be of use to those people who are interested
in linking machine code routines to VICKIT II. A number of useful
subroutine entry polnts are glven, together with a description of the
operation of the GRAPHICS and PUT instructions and detalls of memory used,
both In page zero and absolute memory.

Little information is glven about the VICKIT Il command routines since
they are so specific to the given commands but details of the memory used
by the commands are gliven,

Where absolute addresses are given you are warned that future issues in
the VICKIT serles are not guaranteed to maintain compatibility.

GRAPHICS

The operation of the GRAPHICS instruction varies depending on the amount
of memory the VIC being used contains. The general idea is to 1locate the
screen memory at locations $1E@@ to S1FFF {any numbers preceded by $ are
in hekxadecimal) and the character bit map memory at locations 51888 to
$1DFF, Thus a VIC with only the 3K memory expansion needs no alteration to
the program since there is no clash between program and graphics memory. A
VIC with greater than 3K memory expanslion starts BASIC program storage at
$12090 which would c¢lash with the character bit map memory. A GRAPHICS
statement In a greater than 3K expansion VIC therefore moves the entire
program up ¢to start at $2¢088 (altering all the necessary page zero
pointers on the way). A check 1is made for sufficient memory and If not
enough exists the 720UT OF MEMORY error is given. Before rejoining the
BASIC program a BASIC CLR operation is performed.

PUT

The operation of the PUT instruction is of interest to anyone wanting to
take slices through a BASIC array when PUTting to the screen. PUT treats
array storage simply as a contiguous block of memory so that providing you
only PUT ‘whole' arrays there is no problem. When taking slices through
the array, as in the example program 6, you will need to know abhout the
way that the VIC stores arrays to ensure that you get the correct results,

The VIC stores arrays so that the first dimension wvaries most rapidly so
an array dimenslioned as 8Q(2,1) would be stored 1in the order 50(2,08},
sQ(l,8), S0(2,8), SQ(P,1), SQ{1,1) and SQ(2,1). Since VICKIT 1l stores and
loads from the array iIin a sequential manner you can see that the
information for any area which is accessed separately from the main part
of the array should be accessed by columns., Thus in example program & the
array was dimensioned as CHAR%(3,26) so that a single character {s stored
in array elements with row indices 8, 1, 2 and 3 and can be referenced
easily.

The order in which points are stored or loaded given an area in the PUT
instruction such as (xl,yl)-(x2,y2) depends on the relative values of the
coordinates but can be described best as follows:

1 Start at (xl,vyl) and progress to (x2,yl)

19:54

VICKIT 11 user's manual

2 When a horizontal *scan'! across the area in {nterest has
been performed check the values of yl and y2. If they are
not equal then increment yl by 1 if yl < y2 or decrement yl
by 1 {f yl <= y2 and then repeat step } agalin,

3 If vyl equals y2 terminate the PUT instruction.

Page zero usage

Extensive use is made of page zero locatlions used by the cassette and RS-
232 handling software, It {s wunlikely that cassette and/or RS-232
operations can be performed at the same time as VICKIT Il instructlions,

Location name address uses

PLOTOK SA3 Set to S0P {f ADDRSS carried out an address
calculation correctly. Bit 7 set {If Y was
cout of range, bit 6 set If X was out of

range,

STRTX $A4 Start point for line drawn by DRLINE (x

| coordinate)

STRTY SAS Start point for line drawn by DRLINE [y
coordinate)

LASTX SAG End point for 1line drawn by DRLINE (x
coordinate)

LASTY SAT End point for 1line drawn by DRLINE (y
coordinate)

LINCOL SAD Line colour, $08 for a SET line, $88 for a
RESET line and bit 8 set for an INVERTed
line

COLLID SAF Used in PUT to hold the resuvults of the

collision detection routine

All locations between $A3 and $B3 are used, the ones listed are the most
useful,

Useful absolute locations

Locatlon name address purpose
CuPOSX $8334 Holds the current position (x coordinate)
CUPOSY $8335 Holds the current positlon (y coordinate)

SB3ED-SB3FF
Used by VICKIT 11 commands,

ADDRSS $BBSF Enter with X and ¥ belng coordinates of a
point on the screen. Exit with ($5F),Y
belng the address of the byte in memory
concerned and A containing a mask (1 bit
only set) to the bit within that byte which
is mapped to the point required. PLOTOK is
set up as described above. If elther or
both of the coordinates are out of range
they are replaced by 175 (for x) and 159

(for y).

18:55

MASK

GTPNT

TEXTL
TEXTU

SETPT

RESTPT
INVERP

DRLINE

CLEAR+3

SBBAL
$B340

SBA77
SBATA
SBAOGF
$SBAAG
SBABQ

$BB42

SBAB3

VICKIT 11 userts manual

Start of a table of single bit masks, $86@,
$49 etc.

Enter with X and ¥ as for ADDRSS. Exit wlth
minus flag set if coordinates were off the
screen, {X)=%$81 {f point was set, $8¢ if it
was clear.

Restores screen to text with lower case
option set,

As for TEXTL but restore with graphlic
option set,

Assumes ADDRSS has been executed
immedlately before. SETs the point
calculated by ADDRSS.

As for SETPT but RESETs the point.

As for SETPT and RESTPT but INVERTs the
polint.

Assumes STRTX, STRTY, LASTX, LASTY and
LINCOL have been set up. Draws a 1line of
the specified colour between (STRTX,STRTY)
and (LASTX,LASTY).

Enter with (X) being colour code used In
CLEAR statement, e.g. 1 for BLACK. The
screen 1ls cleared and the VIC enters high
resolution graphics mode.

16:56

Copyright
Stack Computer.Services Limited
290-298 Derby Road, Bootle, Liverpooi L20 8LN,
Engiand.

Debugging Programs.

When using the programmers aid instruction of the
VICKIT II on programs not containing gqraphics commands

some precautions must be taken.

The VICKIT II error handling is geared towards the
graphics section and hence when a programming error
occurs the VICKIT error handling routine relocates the
screen to 7680. If the VIC memory was expanded above
8192 then this new screen position would be overwriting
the program area and corruption would occur. To avoid
this either all programs must contain a graphics
command as the first line or the VICKIT error handling

routine must be disabled as described in the manual
under ERROR HANDLING-BY VICKIT II page 6:39.

ie. POKE 768,56.
SAVING PROGRAMS.

NOTE. After using graphics on the VICKIT II you must

restore the cassette function otherwise you will

be unable to save programs.

This can be achieved by:-

POKE 178, 60
POKE 179,3

or by turning off the VIC and turning it on again.

LOADING THE CIRCLE ROUTINE

The procedure to be followed in order to use CIRCLE with VICKIT II depends
on the amount of memory that you have in your VIC. If you have just a 3K
memory exXpansion (giving 6655 bytes free when yvou turn the VIC on) follow
the instructions headed CIRCLE for VICs with 3K memory expansion. If you
have more than 3K memory expansion follow the ihstructions under the heading

CIRCLE for ViICs with more than 3K memory expansion,

Details of memory used by the CIRCLE routine are given in the section
Information for machine code programmers.

In the VICKIT II user's manual a small section of the instructions for the
CIRCLE statement is missing. This section concerns the use of the start
and finish polints in the CIRCLE statement. The fourth paragrapn on page 5:37

should start:

The start and finish peoints give the proportion of the distance 'round'
the circle that the start point and finish point are to be.

You should note that because of the limited rescolution of the VIC screen
the values of start and finish may require a little experimentation to
produce exactly the required resulit, especially when using a small radius.

Ellipses produced with the CIRCLE statement will be drawn so that the height
is twice the width if ratio is 2, three times the width if ratic is 3 and

so on. The width will alwavs be twice the specified radiu in these cases.
Where ratio 1s less than one the height will always be twice the radius
specified and the width will be an integer multiple of the height. Thus a
ratio of 0.5 generates a width of twice (1/0.5} the height, 0.33 a width

of 3 times (1/0.33 approximately) the height and so on. This is different

to the approach taken by the Tandy and IBM machines wnere the width 1is

always twice the radius.

CIRCLE for VICs with 3K memory expansion

When your VIC is switched on LOAD the CIRCLE program with the command:

SYS 4096 x 1l
LOAD "CIRCLE"

When the program has been LOADed correctly give the following commands:
POKE 1,206:POKE 2,4:5Y5{1028) ¢ HMEW

You can now use the CIRCLE statement as described in the VICKIT XTI user's
manual.

CIRCLE for VICs with more than_3K_mem9yyﬂexpans%gg;

When your VIC is switched on enter the following commands:
POKE 1024,0:POKE 44,4 :NEW

and then LOAD the CIRCLE program with the command:

VICKIT 11 and 111 CIRCLE,

-

Wihen eitther VICKED 11T or FIHD draws o circle using the CIRCLE
command 1t draws a malhematical circle, but unfortnately because of
Lhe 5:2 aspect of the Vie's screen ib appears as an oval.

[his Timibtalion can be over come by use of a BASIC subroutine.

LNAMPLL

10 GRAPHICS @ CLEAR 7.

80 : Y 40 : R 20 : GosuB 10a4a0d

M

8O X

B
M

999% END.
10000 REM CIRCLE SUBROUTINE

10010 FOR T = @ to 2 *= 2 STEP .f#5
10020 X1 = SIN (T) X R + X

10030 Y] CDS (T) *(R* 1.33) + Y
10040 SET (X1,Y1)

10050 NEXT T

10060 RETURN

In line 80 X & Y are co-ordinates for the centre of the circle and
R is the radius of the circle.

By altering the value of .[5 in line 10010 the degree of smoothness
of the circle can be altered, but this is traded off against speed.
the smaller this value the longer it will take to draw a circle.

This routine is slower than the one contained within the VICKIT
chips, so where speed is required use the CIRCLE command and where
a 'true' (it appears as a circle, but is not a mathematical circle)
circle is required use the subroutine.

NOTE FOR CARTRIDGES ORDERED WITHOUT 3K RAM EXPANSION.

[——— N TN T R

T "l Ay s LT e | = T e Bl Bl B e 17IR Rao

i — T —— T w—

1Y, VICKIT 3/2 require extra RAM to operate. This extra
ram must be made avallable before using the firmware
cartridge. RAM size minimum 3K.

2). Circle Routine on VICKIT [T is leaded in Lo the 3K memory
arca 1024-4096, [f Lhis 1s not made available by a 3K
RAM curtridge or similar then the circle function will not
be avallable.

